Introduction: Cadmium (Cd) is a highly toxic heavy metal that can be found everywhere in the environment and can have harmful effects on both human and animal health. Pinostrobin (PSB) is a bioactive natural flavonoid isolated from with several pharmacological properties, such as antiinflammatory, anticancer, antioxidant, and antiviral. This investigation was intended to assess the therapeutic potential of PSB against Cd-induced kidney damage in rats.

Methods: In total, 48 Sprague Dawley rats were divided into four groups: a control, a Cd (5 mg/kg), a Cd + PSB group (5 mg/kg Cd and 10 mg/kg PSB), and a PSB group (10 mg/kg) that received supplementation for 30 days.

Results: Exposure to Cd led to a decrease in the activities of catalase (CAT), glutathione reductase (GSR), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX), whereas levels of reactive oxygen species (ROS) and malondialdehyde (MDA) increased. Cd exposure also caused a substantial increase in urea, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and creatinine levels. Moreover, a noticeable decline was noticed in creatinine clearance. Moreover, Cd exposure considerably increased the levels of inflammatory indices, including interleukin-1b (IL-1b), tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), nuclear factor kappa-B (NF-kB), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) activity. Cd treatment decreased the expression of the antiapoptotic markers (Bcl-2) while increasing the expression of apoptotic markers (Bax and Caspase-3). Furthermore, Cd treatment substantially reduced the TCA cycle enzyme activity, such as alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, and isocitrate dehydrogenase. Moreover, mitochondrial electron transport chain enzymes, succinatedehydrogenase, NADH dehydrogenase, cytochrome c-oxidase, and coenzyme Q-cytochrome reductase activities were also decreased following Cd exposure. PSB administration substantially reduced the mitochondrial membrane potential while inducing significant histological damage. However, PSB treatment significantly reduced Cd-mediated renal damage in rats.

Conclusion: Thus, the present investigation discovered that PSB has ameliorative potential against Cd-induced renal dysfunction in rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278233PMC
http://dx.doi.org/10.3389/fnut.2023.1175008DOI Listing

Publication Analysis

Top Keywords

psb
8
mg/kg psb
8
psb group
8
group mg/kg
8
treatment reduced
8
dehydrogenase
5
alleviative effects
4
effects pinostrobin
4
pinostrobin cadmium-induced
4
cadmium-induced renal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!