Introduction: Traditional visual Brain-Computer Interfaces (v-BCIs) usually use large-size stimuli to attract more attention from users and then elicit more distinct and robust EEG responses, which would cause visual fatigue and limit the length of use of the system. On the contrary, small-size stimuli always need multiple and repeated stimulus to code more instructions and increase separability among each code. These common v-BCIs paradigms can cause problems such as redundant coding, long calibration time, and visual fatigue.
Methods: To address these problems, this study presented a novel v-BCI paradigm using weak and small number of stimuli, and realized a nine-instruction v-BCI system that controlled by only three tiny stimuli. Each of these stimuli were located between instructions, occupied area with eccentricities subtended 0.4°, and flashed in the row-column paradigm. The weak stimuli around each instruction would evoke specific evoked related potentials (ERPs), and a template-matching method based on discriminative spatial pattern (DSP) was employed to recognize these ERPs containing the intention of users. Nine subjects participated in the offline and online experiments using this novel paradigm.
Results: The average accuracy of the offline experiment was 93.46% and the online average information transfer rate (ITR) was 120.95 bits/min. Notably, the highest online ITR achieved 177.5 bits/min.
Discussion: These results demonstrate the feasibility of using a weak and small number of stimuli to implement a friendly v-BCI. Furthermore, the proposed novel paradigm achieved higher ITR than traditional ones using ERPs as the controlled signal, which showed its superior performance and may have great potential of being widely used in various fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278229 | PMC |
http://dx.doi.org/10.3389/fnins.2023.1178283 | DOI Listing |
Cureus
December 2024
Hematology and Medical Oncology, University of Kentucky College of Medicine, Lexington, USA.
Carcinoma of unknown primary (CUP) is a diverse group of malignancies characterized by metastatic disease without an identified primary site. It typically presents with a poor prognosis due to widespread metastasis at diagnosis. This report discusses a 58-year-old female patient with advanced CUP and diffuse liver metastasis.
View Article and Find Full Text PDFSci Rep
January 2025
Henan International Joint Laboratory of Machine Vision and Intelligent Systems, Department of Information Engineering, Pingdingshan University, Pingdingshan, 467000, Henan, China.
Accurate segmentation of power line targets helps quickly locate faults, evaluate line conditions, and provides key image data support and analysis for the safe and stable operation of the power system.The aerial power line in segmentation due to the target is small, and the imaging reflected energy is weak, so the Unmanned Aerial Vehicle (UAV) aerial power line image is very susceptible to the interference of the environment line elements and noise, resulting in the detection of the power line target in the image of the defective, intermittent, straight line interferences and other low accuracy and real-time efficiency is not high. For this reason, this paper designs a pure amplitude stretching kernel function to form a Fourier amplitude vector field and uses this amplitude vector field to implement the stretching transformation of the amplitude field of the aerial power line image, so that the angular field after the Fourier inverse transformation can better react to the spatial domain line targets, and finally, after the Relative Total Variation (RTV) processing, the power line can be well detected.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India.
Water-in-oil emulsions are critical in various fields, including food, agriculture, personal care, and pharmaceuticals. In some situations, spontaneous emulsification occurs in emulsions with high concentrations of oil-soluble surfactants, in which the parent water drops fragment into finer droplets, forming a network near the interface, which exhibits interfacial elasticity. This study investigates this phenomenon using a water/Span 80-paraffin oil system.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Electromagnetic pollution protection and military stealth technologies underscore the urgent need to develop efficient electromagnetic wave-absorbing materials (EWAMs). Traditional EWAMs suffer from single absorption loss mechanisms, poor impedance matching, and weak reflection loss. To date, combining dielectric loss with magnetic loss in EWAMs have proven to be an effective approach to enhancing electromagnetic absorption performance.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan.
Nanoclusters are nanometer-sized molecular compounds characterized by significant metal-metal bonding and low average oxidation states, and they exhibit unique properties distinct from those of small metal complexes or nanoparticles. Unlike noble metals stable in metallic forms, the synthesis of nanometer-sized iron clusters has been precluded by the relatively weak iron-iron bonds and the high reactivity of low oxidation state iron, despite the extensive history of molecular iron compounds. Here, we report the synthesis and characterization of a cationic 55-atom iron cluster with a 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!