One of the promising chemical groups for the development of new antihypertensive medicines, the action of which is associated with the inhibition of phosphodiesterase III (PDE3) activity, are phosphorylated oxazole derivatives (OVPs). This study aimed to prove experimentally the presence of the OVPs antihypertensive effect associated with decreasing of PDE activity and to justify its molecular mechanism. An experimental study of the effect of OVPs on phosphodiesterase activity was performed on Wistar rats. Determination of PDE activity was performed by fluorimetric method using umbelliferon in blood serum and organs. The docking method was used to investigate the potential molecular mechanisms of the antihypertensive action of OVPs with PDE3. The introduction of OVP-1 50 mg/kg, as a leader compound, led to the restoration of PDE activity in the aorta, heart and serum of rats with hypertension to the values observed in the intact group. This may indicate the possibility of the development of vasodilating action of OVPs by the influence of the latter on the increase in cGMP synthesis due to inhibition of PDE activity. The calculated results of molecular docking of ligands OVPs to the active site of PDE3 showed that all test compounds have a common type of complexation due to phosphonate groups, piperidine rings, side and terminal phenyl and methylphenyl groups. The analysis of the obtained results both and showed that phosphorylated oxazole derivatives represent a new platform for further studies as phosphodiesterase III inhibitors with antihypertensive activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278226PMC
http://dx.doi.org/10.34172/apb.2023.044DOI Listing

Publication Analysis

Top Keywords

pde activity
16
phosphorylated oxazole
12
oxazole derivatives
12
phosphodiesterase iii
8
activity performed
8
action ovps
8
activity
7
ovps
6
prospective phosphodiesterase
4
phosphodiesterase inhibitors
4

Similar Publications

Neuronal nitric oxide synthase activation by tadalafil protects neurological impairments in a zebrafish larva model of hyperammonemia.

Life Sci

December 2024

Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Aims: Hyperammonaemia (HA) is a metabolic disorder characterized by increased ammonia levels in the blood and is associated with severe neurological impairments. Some previous findings have shown the involvement of the nitric oxide pathway in HA-induced neurological impairments. The current study explored the impact of tadalafil on neurological impairments induced by HA in a zebrafish larval model due to its reported indirect interactions with the nitric oxide pathway.

View Article and Find Full Text PDF

Objective: This paper investigated the effects of prenatal drug exposure (PDE), childhood trauma (CT), and their interactions on the neurobiological markers for emotion processing.

Method: Here, in a non-clinical sample of pre-adolescents (9-10 years of age) from the Adolescent Brain Cognitive Development (ABCD) Study (N = 6,146), we investigate the impact of PDE to commonly used substances (ie, alcohol, cigarettes, and marijuana), CT, and their interaction on emotion processing. From the Emotional N-back functional magnetic resonance imaging task data, we selected 26 regions of interests, previously implicated in emotion processing, and conducted separate linear mixed models (108 total) and accounted for available environmental risk factors.

View Article and Find Full Text PDF

The microenvironmental changes in peritoneal dialysis effluent (PDE) after long-term vintage (LV) of PD in patients with ultrafiltration failure (LV_UF) are unclear. Single-cell sequencing revealed that peritoneal neutrophils were elevated in LV_UF patients, while MRC1-macrophage subcluster decreased compared with PD patients with short vintage (SV) and LV without ultrafiltration failure (LV_NOT_UF). Compared with the LV_NOT_UF group, the upregulated differentially expressed genes (DEGs) of monocytes/macrophages in the LV_UF group were involved in inflammatory response and EMT progress.

View Article and Find Full Text PDF

Cyclic AMP (cAMP) has a crucial role in many vital cellular processes and there has been much effort expended in the discovery of inhibitors against the enzyme superfamily that degrades this second messenger, namely phosphodiesterases (PDEs). The journey of competitive PDE inhibitors to the clinic has been hampered by side effects profiles that have resulted from a lack of selectivity for subfamilies and individual isoforms because of high conservation of catalytic site sequences and structures. Here we introduce a proteolysis targeting chimera (PROTAC) that can specifically target a small subset of isoforms from the PDE4 family to send the enzyme for degradation at the proteasome by recruiting a ubiquitin E3 ligase into proximity with the PDE.

View Article and Find Full Text PDF

Background And Purpose: Sarcoplasmic reticulum Ca-ATPase (SERCA2a) is impaired in heart failure. Phosphodiesterases (PDEs) are implicated in the modulation of local cAMP signals and protein kinase A (PKA) activity essential for cardiac function. We characterise PDE isoforms that underlie decreased activities of SERCA2a and reduced cardiac contractile function in diabetic cardiomyopathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!