Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Accurate and efficient methods to identify venous thromboembolism (VTE) events in hospitalized people are needed to support large-scale studies. Validated computable phenotypes using a specific combination of discrete, searchable elements in electronic health records to identify VTE and distinguish between hospital-acquired (HA)-VTE and present-on-admission (POA)-VTE would greatly facilitate the study of VTE, obviating the need for chart review.
Objectives: To develop and validate computable phenotypes for POA- and HA-VTE in adults hospitalized for medical reasons.
Methods: The population included admissions to medical services from 2010 to 2019 at an academic medical center. POA-VTE was defined as VTE diagnosed within 24 hours of admission, and HA-VTE as VTE identified more than 24 hours after admission. Using discharge diagnosis codes, present-on-admission flags, imaging procedures, and medication administration records, we iteratively developed computable phenotypes for POA-VTE and HA-VTE. We assessed the performance of the phenotypes using manual chart review and survey methodology.
Results: Among 62,468 admissions, 2693 had any VTE diagnosis code. Using survey methodology, 230 records were reviewed to validate the computable phenotypes. Based on the computable phenotypes, the incidence of POA-VTE was 29.4 per 1000 admissions and that of HA-VTE was 3.6 per 1000 admissions. The POA-VTE computable phenotype had positive predictive value and sensitivity of 88.8% (95% CI, 79.8%-94.0%) and 99.1% (95% CI, 94.0%- 99.8%), respectively. Corresponding values for the HA-VTE computable phenotype were 84.2% (95% CI, 60.8%-94.8%) and 72.3% (95% CI, 40.9%-90.8%).
Conclusion: We developed computable phenotypes for HA-VTE and POA-VTE with adequate positive predictive value and sensitivity. This phenotype can be used in electronic health record data-based research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277582 | PMC |
http://dx.doi.org/10.1016/j.rpth.2023.100162 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!