About the compatibility between the perturbational complexity index and the global neuronal workspace theory of consciousness.

Neurosci Conscious

Neuroscience Department, Institut Pasteur, 25-28 Rue du Dr Roux, Paris 75015, France.

Published: June 2023

This paper investigates the compatibility between the theoretical framework of the global neuronal workspace theory (GNWT) of conscious processing and the perturbational complexity index (PCI). Even if it has been introduced within the framework of a concurrent theory (i.e. Integrated Information Theory), PCI appears, in principle, compatible with the main tenet of GNWT, which is a conscious process that depends on a long-range connection between different cortical regions, more specifically on the amplification, global propagation, and integration of brain signals. Notwithstanding this basic compatibility, a number of limited compatibilities and apparent differences emerge. This paper starts from the description of brain complexity, a notion that is crucial for PCI, to then summary of the main features of PCI and the main tenets of GNWT. Against this background, the text explores the compatibility between PCI and GNWT. It concludes that GNWT and PCI are fundamentally compatible, even though there are some partial disagreements and some points to further examine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279414PMC
http://dx.doi.org/10.1093/nc/niad016DOI Listing

Publication Analysis

Top Keywords

perturbational complexity
8
global neuronal
8
neuronal workspace
8
workspace theory
8
gnwt conscious
8
pci
6
gnwt
5
compatibility
4
compatibility perturbational
4
complexity and the
4

Similar Publications

Abnormalities in gene expression profiles characterize patients with inflammatory skin diseases, including psoriasis, and changes may reflect the action of specific therapeutic agents. To examine this, gene expression analysis of psoriatic skin was assessed by Gene Set Variation Analysis using informative gene modules, and longitudinal data were analyzed to assess the impact of various treatments. Ridge penalized logistic regression was employed to derive a transcriptomic score.

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by the two C domains of the Ca sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 CB domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca-binding loops away from the fusion site.

View Article and Find Full Text PDF

Adjustment of Molecular Sorption Equilibrium on Catalyst Surface for Boosting Catalysis.

Acc Chem Res

January 2025

Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.

View Article and Find Full Text PDF

Why cancer cells disproportionately accumulate polyubiquitinated proteotoxic proteins despite high proteasomal activity is an outstanding question. While mis-regulated ubiquitination is a contributing factor, here we show that a structurally-perturbed and sub-optimally functioning proteasome is at the core of altered proteostasis in tumors. By integrating the gene coexpression signatures of proteasomal subunits in breast cancer (BrCa) patient tissues with the atomistic details of 26S holocomplex, we find that the transcriptional deregulation induced-stoichiometric imbalances perpetuate with disease severity.

View Article and Find Full Text PDF

Disruption of the blood supply to a limb in conjunction with active movement boosts muscle growth, aids in rehabilitation, and allows controlled exploration of the sensorimotor system. Yet, the underlying neuromechanical changes have not been observed in great detail. This study aims to report the acute neuromuscular effects of temporary blood flow restriction (BFR) through behavioral changes at the level of motor units (MUs) using high-density surface electromyography on the abductor digiti minimi muscle during 20 trapezoidal and sinusoidal isometric force tracking tasks (5 pre-BFR, 5 during BFR, and 10 post-BFR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!