Inhomogeneous swelling of polymer films in liquid environments may find applications in soft actuators and sensors. Among them, fluoroelastomer based films bend up spontaneously once they are placed on an acetone-soaked filter paper. The stretchability and dielectric properties of a fluoroelastomer is attractive in the fields of soft actuators and sensors, making in-depth studies on and understanding of fluoroelastomer bending behaviors important. Here, we report an abnormal size-dependent bending phenomenon of rectangular fluoroelastomer films, which transform the bending direction from the long-side bending to the short-side bending as their length or width increases or the thickness decreases. By using finite element analysis and an analytical expression obtained using a bilayer model, we reveal the key role of gravity in determining the size-dependent bending behavior. In the bilayer model, an energy quantity is obtained to characterize the role of each material and geometrical parameters in determining the size-dependent bending behavior. We further construct phase diagrams to correlate the bending modes and the film sizes based on the finite element results, which are in good agreement with experimental results. These findings can be useful for the design of future swelling-based polymer actuators and sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3sm00615h | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.
Nanoplastics (NPs) are ubiquitous in the environment, posing significant threats to biological systems, including nervous systems, across various trophic levels. Nevertheless, the molecular mechanisms behind the size-dependent neurotoxicity of NPs remain unclear. Here, we investigated the neurotoxicity of 20 and 100 nm polystyrene NPs (PS-NPs) to zebrafish.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA.
This study examines the specimen size-dependent deformation behavior of commercially pure titanium grade 4 (cp-Ti grade 4) sheets under tension, with strain paths between uniaxial tension (UT) and plane-strain tension and compares the results with cyclic bending under tension (CBT) data. Specimens of varying widths (11.7, 20, 60, 100, and 140 mm) were tested in both rolling (RD) and transverse (TD) directions.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
The mechanical properties at small length scales are not only significant for understanding the intriguing size-dependent behaviors but also critical for device applications. Nanoindentation via atomic force microscopy is widely used for small-scale mechanical testing, yet determining the Young's modulus of quasi-2D films from freestanding force-displacement curve of nanoindentation remains challenging, complicated by both bending and stretching that are highly nonlinear. To overcome these difficulties, a machine learning model is developed based on the back propagation (BP) neural network and finite element training to accurately determine the Young's modulus, pretension, and thickness of freestanding films from nanoindentation force-displacement curves simultaneously, improving the computational efficiency by two orders of magnitude over conventional brute force curve fitting.
View Article and Find Full Text PDFJ Biomech
November 2024
School of Mechanical Engineering, Purdue University, United States of America. Electronic address:
Quasi-brittle fracture mechanics is used to evaluate fracture of human cortical bone in aging. The approach is demonstrated using cortical bone bars extracted from one 92-year-old human male cadaver. In-situ fracture mechanics experiments in a 3D X-ray microscope are conducted.
View Article and Find Full Text PDFChemCatChem
October 2023
Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Department of Chemistry Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands.
Capturing and converting CO through artificial photosynthesis using photoactive, porous materials is a promising approach for addressing increasing CO concentrations. Porphyrinic Zr-based metal-organic frameworks (MOFs) are of particular interest as they incorporate a photosensitizer in the porous structure. Herein, the initial step of the artificial photosynthesis is studied: CO sorption and activation in the presence of water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!