Anaerobic phloroglucinol degradation by .

mBio

Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.

Published: August 2023

Polyphenols are abundant in nature, and their anaerobic biodegradation by gut and soil bacteria is a topic of great interest. The O requirement of phenol oxidases is thought to explain the microbial inertness of phenolic compounds in anoxic environments, such as peatlands, termed the enzyme latch hypothesis. A caveat of this model is that certain phenols are known to be degraded by strict anaerobic bacteria, although the biochemical basis for this process is incompletely understood. Here, we report the discovery and characterization of a gene cluster in the environmental bacterium for the degradation phloroglucinol (1,3,5-trihydroxybenzene), a key intermediate in the anaerobic degradation of flavonoids and tannins, which constitute the most abundant polyphenols in nature. The gene cluster encodes the key C-C cleavage enzyme dihydrophloroglucinol cyclohydrolase, as well as ()-3-hydroxy-5-oxo-hexanoate dehydrogenase and triacetate acetoacetate-lyase, which enable phloroglucinol to be utilized as a carbon and energy source. Bioinformatics studies revealed the presence of this gene cluster in phylogenetically and metabolically diverse gut and environmental bacteria, with potential impacts on human health and carbon preservation in peat soils and other anaerobic environmental niches. IMPORTANCE This study provides novel insights into the microbiota's anaerobic metabolism of phloroglucinol, a critical intermediate in the degradation of polyphenols in plants. Elucidation of this anaerobic pathway reveals enzymatic mechanisms for the degradation of phloroglucinol into short-chain fatty acids and acetyl-CoA, which are used as a carbon and energy source for bacterium growth. Bioinformatics studies suggested the prevalence of this pathway in phylogenetically and metabolically diverse gut and environmental bacteria, with potential impacts on carbon preservation in peat soils and human gut health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470551PMC
http://dx.doi.org/10.1128/mbio.01099-23DOI Listing

Publication Analysis

Top Keywords

gene cluster
12
degradation polyphenols
8
degradation phloroglucinol
8
carbon energy
8
energy source
8
bioinformatics studies
8
phylogenetically metabolically
8
metabolically diverse
8
diverse gut
8
gut environmental
8

Similar Publications

Programmed cell death protein 1 (PDCD1) and cluster of differentiation 274 (CD274) expression is implicated in escaping tumors from immune surveillance. Immune checkpoint inhibitors show promise in cancer therapy, yet their efficacy in glioblastomas, particularly with IDH1 mutations, remains unclear. This study analyzed two independent NGS datasets (n = 577 and n = 153) from TCGA to investigate the expression of PDCD1 and CD274 in glioblastomas and their relationship with IDH1 mutations.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

In our research, we performed temporal transcriptomic profiling of host cells infected with Equid alphaherpesvirus 1 (EHV-1) by utilizing direct cDNA sequencing based on nanopore MinION technology. The sequencing reads were harnessed for transcript quantification at various time points. Viral infection-induced differential gene expression was identified through the edgeR package.

View Article and Find Full Text PDF

This study aimed to develop novel hydrogels using polycaprolactone (PCL), nano-silver (Ag), and linalool (Lin) to address the challenge of increasing antimicrobial resistance in healing infected wounds. The hydrogels' morphological properties, in vitro release profiles, antibacterial efficacy, and safety were investigated. Hydrogels were prepared from PCL/Ag, PCL/Lin, and PCL/Ag/Lin formulations and applied to infected wounds.

View Article and Find Full Text PDF

Rhodothalassium (Rts.) salexigens is a halophilic purple nonsulfur bacterium and the sole species in the genus Rhodothalassium, which is itself the sole genus in the family Rhodothalassiaceae and sole family in the order Rhodothalassiales (class Alphaproteobacteria). The genome of this phylogenetically unique phototroph comprises 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!