A stable and reusable electrochemiluminescent (ECL) signal amplification strategy was proposed through a pyrene-based conjugated polymer (Py-CP) triggered self-circulating enhancement system. Specifically, the delocalized conjugated π-electrons of Py-CPs made it an excellent coreactant to arouse the initial ECL signal improvement of Ru(phen), but the subsequent signal reduction was attributed to the consumption of Py-CPs, in which this stage was called the signal sensitization evoking phase (SSEP). Then, the maximum use of ECL luminescence of Ru(phen) produced in the SSEP was made to irradiate the photosensitizer Py-CPs for in situ producing numerous ·OH, and a stronger and more stable ECL response stage defined as the signal sensitization stabilize phase was reached. Encouragingly, the incorporation of NbC MXene quantum dots with an exceptional physicochemical property not only foreshortens the SSEP for quickly acquiring a stable ECL signal but also introduces the photoacoustic (PA) transduce mechanism for achieving dual-signal outputting. Ultimately, the portable and miniaturized ECL-PA synergetic sensing platform based on the closed-bipolar electrode realized sensitive let-7a detection in a wide linear range from 10 to 10 nM with a low detection limit of 3.3 × 10 nM and also demonstrated good selectivity, excellent stability, and high reliability. The successful application of an innovative signal transduction mechanism and dexterous coupling modality will provide new insights for advancing the development of flexible analytical devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.3c01103 | DOI Listing |
Anal Chim Acta
January 2025
Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:
Background: Glycholic acid (GCA) can dynamically reflect the process of liver injury, and can be used for early diagnosis and curative effect evaluation of early hepatitis and cirrhosis. The highly sensitive detection of liver injury markers is conducive to a more accurate and effective auxiliary diagnosis of liver diseases. In addition, the low trigger potential helps to avoid more chemical interference and improve the detection sensitivity.
View Article and Find Full Text PDFFood Chem
January 2025
College of Chemistry, Jilin University, Changchun 130012, People's Republic of China. Electronic address:
To sensitively monitor trace-level of malathion (MAT) in vegetable samples, an ultrasensitive solid-state electrochemiluminescence (ECL) sensor was proposed based on TiO@CdSe and Ru(bpy)@Ag NPs. In this system, the introduction of Ag NPs enhanced the initial ECL signal of Ru(bpy)- tripropylamine (TPrA). When TiO@CdSe was introduced into the system, the ECL signal was further enhanced, which may be due to the synergistic effect of the two complexes.
View Article and Find Full Text PDFFood Chem
December 2024
School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. Electronic address:
Metal-organic frameworks (MOFs) are highly valued for their electronic and optical capabilities in food sample analysis. Implementing MOF-based sensors is crucial for public health safety. This review centers on electrochemiluminescence (ECL) MOFs for monitoring food samples, highlighting signal changes from combining MOFs with Ru(bpy), TPrA, nanomaterials, and biomolecules.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China. Electronic address:
The adjustment of the electrochemiluminescence (ECL) of polymeric carbon nitride (CN) is essential for its application in sensitive immunoassays. However, such modification through aggregation-induced emission (AIE) has not yet been reported. Herein, aggregation-induced ECL in CN oligomer (CNO) was induced through the introduction of a rotatable imine moiety, with the resulting material exhibiting excellent performance in the targeted immunodetection of neuron-specific enolase.
View Article and Find Full Text PDFAnal Biochem
January 2025
Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, PR China. Electronic address:
Luminol-loaded mesoporous carbon nanospheres (MCs@LU) were utilized to develop a highly sensitive electrochemiluminescence (ECL) sensor for the detection of L-cysteine (L-Cys). L-Cys acted as the coreactant of luminol, and the pore confinement effect of mesoporous carbons (MCs) resulted in a robust ECL signal. Upon optimization, a linear correlation between the ECL intensity and L-Cys concentration was observed over the range of 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!