A stable and reusable electrochemiluminescent (ECL) signal amplification strategy was proposed through a pyrene-based conjugated polymer (Py-CP) triggered self-circulating enhancement system. Specifically, the delocalized conjugated π-electrons of Py-CPs made it an excellent coreactant to arouse the initial ECL signal improvement of Ru(phen), but the subsequent signal reduction was attributed to the consumption of Py-CPs, in which this stage was called the signal sensitization evoking phase (SSEP). Then, the maximum use of ECL luminescence of Ru(phen) produced in the SSEP was made to irradiate the photosensitizer Py-CPs for in situ producing numerous ·OH, and a stronger and more stable ECL response stage defined as the signal sensitization stabilize phase was reached. Encouragingly, the incorporation of NbC MXene quantum dots with an exceptional physicochemical property not only foreshortens the SSEP for quickly acquiring a stable ECL signal but also introduces the photoacoustic (PA) transduce mechanism for achieving dual-signal outputting. Ultimately, the portable and miniaturized ECL-PA synergetic sensing platform based on the closed-bipolar electrode realized sensitive let-7a detection in a wide linear range from 10 to 10 nM with a low detection limit of 3.3 × 10 nM and also demonstrated good selectivity, excellent stability, and high reliability. The successful application of an innovative signal transduction mechanism and dexterous coupling modality will provide new insights for advancing the development of flexible analytical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c01103DOI Listing

Publication Analysis

Top Keywords

ecl signal
12
synergetic sensing
8
sensing platform
8
pyrene-based conjugated
8
conjugated polymer
8
signal sensitization
8
stable ecl
8
signal
7
ecl
5
optical acoustic
4

Similar Publications

Low-potential bionic electrochemiluminescence sensing platform based on SnS/CuNWs synergistic promotion for highly selective detection of glycocholic acid.

Anal Chim Acta

January 2025

Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:

Background: Glycholic acid (GCA) can dynamically reflect the process of liver injury, and can be used for early diagnosis and curative effect evaluation of early hepatitis and cirrhosis. The highly sensitive detection of liver injury markers is conducive to a more accurate and effective auxiliary diagnosis of liver diseases. In addition, the low trigger potential helps to avoid more chemical interference and improve the detection sensitivity.

View Article and Find Full Text PDF

To sensitively monitor trace-level of malathion (MAT) in vegetable samples, an ultrasensitive solid-state electrochemiluminescence (ECL) sensor was proposed based on TiO@CdSe and Ru(bpy)@Ag NPs. In this system, the introduction of Ag NPs enhanced the initial ECL signal of Ru(bpy)- tripropylamine (TPrA). When TiO@CdSe was introduced into the system, the ECL signal was further enhanced, which may be due to the synergistic effect of the two complexes.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are highly valued for their electronic and optical capabilities in food sample analysis. Implementing MOF-based sensors is crucial for public health safety. This review centers on electrochemiluminescence (ECL) MOFs for monitoring food samples, highlighting signal changes from combining MOFs with Ru(bpy), TPrA, nanomaterials, and biomolecules.

View Article and Find Full Text PDF

Flower-like tailored carbon nitride oligomer as an excellent aggregation-induced electrochemiluminescence emitter for sensitive immunoassay of neuron-specific enolase via dual quenching by bimetallic phenolic networks.

J Colloid Interface Sci

January 2025

Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China. Electronic address:

The adjustment of the electrochemiluminescence (ECL) of polymeric carbon nitride (CN) is essential for its application in sensitive immunoassays. However, such modification through aggregation-induced emission (AIE) has not yet been reported. Herein, aggregation-induced ECL in CN oligomer (CNO) was induced through the introduction of a rotatable imine moiety, with the resulting material exhibiting excellent performance in the targeted immunodetection of neuron-specific enolase.

View Article and Find Full Text PDF

Mesoporous carbon nanospheres-assisted amplified electrochemiluminescence for l-cysteine detection.

Anal Biochem

January 2025

Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, PR China. Electronic address:

Luminol-loaded mesoporous carbon nanospheres (MCs@LU) were utilized to develop a highly sensitive electrochemiluminescence (ECL) sensor for the detection of L-cysteine (L-Cys). L-Cys acted as the coreactant of luminol, and the pore confinement effect of mesoporous carbons (MCs) resulted in a robust ECL signal. Upon optimization, a linear correlation between the ECL intensity and L-Cys concentration was observed over the range of 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!