Distinguishing isomeric saccharides poses a major challenge for analytical workflows based on (liquid chromatography) mass spectrometry (LC-MS). In recent years, many studies have proposed infrared ion spectroscopy as a possible solution as the orthogonal, spectroscopic characterization of mass-selected ions can often distinguish isomeric species that remain unresolved using conventional MS. However, the high conformational flexibility and extensive hydrogen bonding in saccharides cause their room-temperature fingerprint infrared spectra to have broad features that often lack diagnostic value. Here, we show that room-temperature infrared spectra of ion-complexed saccharides recorded in the previously unexplored far-infrared wavelength range (300-1000 cm) provide well-resolved and highly diagnostic features. We show that this enables distinction of isomeric saccharides that differ either by their composition of monosaccharide units and/or the orientation of their glycosidic linkages. We demonstrate the utility of this approach from single monosaccharides up to isomeric tetrasaccharides differing only by the configuration of a single glycosidic linkage. Furthermore, through hyphenation with hydrophilic interaction liquid chromatography, we identify oligosaccharide biomarkers in patient body fluid samples, demonstrating a generalized and highly sensitive MS-based method for the identification of saccharides found in complex sample matrices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323868 | PMC |
http://dx.doi.org/10.1021/acs.analchem.3c00363 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!