Parasitism by gastrointestinal nematodes is a challenge for small ruminant farming worldwide. It causes productive and economic losses, especially due to parasite resistance to conventional anthelmintics. Natural compounds with antiparasitic activity are a potential alternative for controlling these parasites especially when considering the widespread occurrence of anthelmintic resistance. Our objective was to evaluate the activity of anacardic acid, geraniol, cinnamaldehyde and citronellal on Haemonchus contortus isolates with different levels of anthelmintic resistance profiles. These compounds were tested using egg hatch assays (EHAs), larval development tests (LDTs) as well as LDTs on mini-fecal cultures, on the Haemonchus contortus isolates Kokstad (KOK-resistant to all anthelmintics), Inbred-Strain-Edinburgh (ISE-susceptible to all anthelmintics) and Echevarria (ECH-susceptible to all anthelmintics). Effective concentrations to inhibit 50% (EC50) and 95% (EC95) of egg hatching and larval development were calculated. Results for EHA and LDT for all tested compounds, considering EC50 and EC95 values, showed low variation among the studied isolates with most RF values below 2x. All studied compounds showed efficacy against egg hatching and larval development of H. contortus isolates regardless of anthelmintic resistance profiles. The compounds with the smallest EC50 and EC95 values were cinnamaldehyde and anacardic acid making them promising candidates for future in vivo studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321719PMC
http://dx.doi.org/10.1590/S1984-29612023027DOI Listing

Publication Analysis

Top Keywords

contortus isolates
16
anacardic acid
12
haemonchus contortus
12
anthelmintic resistance
12
larval development
12
cinnamaldehyde citronellal
8
resistance profiles
8
profiles compounds
8
egg hatching
8
hatching larval
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!