Non-aqueous redox flow batteries (RFBs) are highly attractive for grid-scale energy storage applications because of their independent design of energy and power, high energy density and efficiency, easy maintenance, and potentially low cost. In order to develop active molecules with large solubility, excellent electrochemical stability, and high redox potential for a non-aqueous RFB catholyte, herein, two flexible methoxymethyl groups had been attached to a famous redox-active tetrathiafulvalene (TTF) core. The strong intermolecular packing of the rigid TTF unit was effectively depressed, leading to a dramatically improved solubility of up to 3.1 M in conventional carbonate solvents. The performance of the obtained dimethoxymethyl TTF (DMM-TTF) was studied in a semi-solid RFB system with Li foil as the counter electrode. When using porous Celgard as the separator, the hybrid RFB with 0.1 M DMM-TTF had two high discharge plateaus at 3.20 and 3.52 V and a low capacity retention of 30.7% after 100 cycles at 5 mA cm. Replacing Celgard with a permselective membrane, the capacity retention was increased to 85.4%. Further increasing the concentration of DMM-TTF to 1.0 M and current density to 20 mA cm, the hybrid RFB exhibited a high volumetric discharge capacity of 48.5 A h L and an energy density of 154 W h L. The capacity was maintained at 72.2% after 100 cycles (10.7 days). The great redox stability of DMM-TTF was revealed by UV-vis and H NMR tests and verified by density functional theory calculations. Therefore, the methoxymethyl group is an excellent group to increase the solubility while maintaining the redox capability of TTF for high-performance non-aqueous RFBs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c05387DOI Listing

Publication Analysis

Top Keywords

non-aqueous redox
8
redox flow
8
flow batteries
8
energy density
8
hybrid rfb
8
capacity retention
8
100 cycles
8
redox
5
highly soluble
4
soluble dimethoxymethyl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!