Mitochondrial dysfunction and oxidative stress in diabetic wound.

J Biochem Mol Toxicol

Department of Hand and Foot Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China.

Published: July 2023

Diabetic wounds nowadays have become a major health challenge with the changes of the disease spectrum. Mitochondria are closely associated with stubborn nonhealing diabetic wounds for their vital role in energy metabolism, redox homeostasis, and signal transduction. There is significant mitochondrial dysfunction and oxidative stress in diabetic wounds. However, the contribution of mitochondrial dysfunction in oxidative stress induced nonhealing diabetic wound is still not fully understood. In this review, we will briefly summarize the current knowledge of the reported signaling pathways and therapeutic strategies involved in mitochondrial dysfunction in diabetic wounds. The findings provide further understanding of strategies that focus on mitochondria in diabetic wound treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.23407DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
16
diabetic wounds
16
dysfunction oxidative
12
oxidative stress
12
diabetic wound
12
stress diabetic
8
nonhealing diabetic
8
diabetic
7
mitochondrial
4
wound diabetic
4

Similar Publications

Fatty acid binding proteins (FABPs) are a class of small molecular mass intracellular lipid chaperone proteins that bind to hydrophobic ligands, such as long-chain fatty acids. FABP5 expression was significantly upregulated in the N-methyl-d-aspartic acid (NMDA) model, the microbead-induced chronic glaucoma model, and the DBA/2J mice. Previous studies have demonstrated that FABP5 can mediate mitochondrial dysfunction and oxidative stress in ischemic neurons, but the role of FABP5 in oxidative stress and cell death in retina NMDA injury models is unclear.

View Article and Find Full Text PDF

The underlying mechanisms explaining the differential course of SARS-CoV-2 infection and the potential clinical consequences after COVID-19 resolution have not been fully elucidated. As a dysregulated mitochondrial activity could impair the immune response, we explored long-lasting changes in mitochondrial functionality, circulating cytokine levels, and metabolomic profiles of infected individuals after symptoms resolution, to evaluate whether a complete recovery could be achieved. Results of this pilot study evidenced that different parameters of aerobic respiration in lymphocytes of individuals recuperated from a severe course lagged behind those shown upon mild COVID-19 recovery, in basal conditions and after simulated reinfection, and they also showed altered glycolytic capacity.

View Article and Find Full Text PDF

Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.

View Article and Find Full Text PDF

Maternal obesity puts the offspring at high risk of developing obesity and cardio-metabolic diseases in adulthood. Here, we utilized a mouse model of maternal high-fat diet (HFD)-induced obesity that recapitulates metabolic perturbations seen in humans. We show increased adiposity in the offspring of HFD-fed mothers (Off-HFD) when compared to the offspring regular diet-fed mothers (Off-RD).

View Article and Find Full Text PDF

Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!