We perform coarse-grained (CG) molecular dynamics (MD) simulations to investigate the self-assembly of collagen-like peptide (CLP) triple helices into fibrillar structures and percolated networks as a function of solvent quality. The focus of this study is on CLP triple helices whose strands are different lengths (, heterotrimers), leading to dangling 'sticky ends'. These 'sticky ends' are segments of the CLP strands that have unbonded hydrogen-bonding donor/acceptor sites that drive heterotrimeric CLP triple helices to physically associate with one another, leading to assembly into higher-order structures. We use a validated CG model for CLP in implicit solvent and capture varying solvent quality through changing strength of attraction between CG beads representing the amino acids in the CLP strands. Our CG MD simulations show that, at lower CLP concentrations, CLP heterotrimers assemble into fibrils and, at higher CLP concentrations, into percolated networks. At higher concentrations, decreasing solvent quality causes (i) the formation of heterogeneous network structures with a lower degree of branching at network junctions and (ii) increases in the diameter of network strands and pore sizes. We also observe a nonmonotonic effect of solvent quality on distances between network junctions due to the balance between heterotrimer end-end associations driven by hydrogen bonding and side-side associations driven by worsening solvent quality. Below the percolation threshold, we observe that decreasing solvent quality leads to the formation of fibrils composed of multiple aligned CLP triple helices, while the number of 'sticky ends' governs the spatial extent (radius of gyration) of the assembled fibrils.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560457 | PMC |
http://dx.doi.org/10.1039/d3sm00374d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!