AI Article Synopsis

Article Abstract

Background: Using targeted liposomes to encapsulate and deliver drugs has become a hotspot in biomedical research. Folated Pluronic F87/D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) co-modified liposomes (FA-F87/TPGS-Lps) were fabricated for curcumin delivery, and intracellular targeting of liposomal curcumin was investigated.

Methods: FA-F87 was synthesized and its structural characterization was conducted through dehydration condensation. Then, cur-FA-F87/TPGS-Lps were prepared via thin film dispersion method combined with DHPM technique, and their physicochemical properties and cytotoxicity were determined. Finally, the intracellular distribution of cur-FA-F87/TPGS-Lps was investigated using MCF-7 cells.

Results: Incorporation of TPGS in liposomes reduced their particle size, but increased the negative charge of the liposomes as well as their storage stability, and the encapsulation efficiency of curcumin was improved. While, modification of liposomes with FA increased their particle size, and had no impact on the encapsulation efficiency of curcumin in liposomes. Among all the liposomes (cur-F87-Lps, cur-FA-F87-Lps, cur-FA-F87/TPGS-Lps and cur-F87/TPGS-Lps), cur-FA-F87/TPGS-Lps showed highest cytotoxicity to MCF-7 cells. Moreover, cur-FA-F87/TPGS-Lps was found to deliver curcumin into the cytoplasm of MCF-7 cells.

Conclusion: Folate-Pluronic F87/TPGS co-modified liposomes provide a novel strategy for drug loading and targeted delivery.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1567201820666230619112502DOI Listing

Publication Analysis

Top Keywords

co-modified liposomes
12
liposomes
9
folated pluronic
8
f87/tpgs co-modified
8
targeted delivery
8
particle size
8
encapsulation efficiency
8
efficiency curcumin
8
curcumin
6
cur-fa-f87/tpgs-lps
5

Similar Publications

Article Synopsis
  • The study focuses on creating a new drug delivery system using dual-ligand-modified liposomes to target glioma, with the goal of overcoming the blood-brain barrier and improving drug effectiveness.
  • Researchers used a specific technique to prepare liposomes that co-load a photosensitizer (ICG) and a chemotherapeutic drug (MTO), and tested their properties and ability to penetrate the blood-brain barrier while targeting glioma cells.
  • Results showed that the modified liposomes were stable, capable of effectively penetrating the blood-brain barrier, concentrating in glioma cells, and exhibited strong anti-tumor effects, highlighting their potential in improving glioma treatment.
View Article and Find Full Text PDF

In recent years, the integration of radiotherapy and nanocatalytic medicine has gained widespread attention in the treatment of breast cancer. Herein, the glucose oxidase (GOx) and MnO nanoparticles co-modified multifunctional liposome of GOx-MnO@Lip was constructed for enhanced radiotherapy. Introduction of GOx would not only elevate the glucose consumption to starve the cancer cells, but also increased the endogenous HO level.

View Article and Find Full Text PDF

Background: Combining Doxorubicin (DOX) with sorafenib (SF) is a promising strategy for treating Hepatocellular Carcinoma (HCC). However, strict dosage control is required for both drugs, and there is a lack of target selectivity.

Objective: This study aims to develop a novel nano-drug delivery system for the combined use of DOX and SF, aiming to reduce their respective dosages, enhance therapeutic efficacy, and improve target selectivity.

View Article and Find Full Text PDF

Aim: To construct a novel liposomal drug delivery system co-modified with SP94 and BR2 ligands, encapsulating both the bitter ginseng derivative B21 and doxorubicin (DOX), to achieve superior anti-tumour efficacy and reduced toxic side effects.

Methods: Liposomes were prepared using an organic phase reaction method, with B21 encapsulated in the lipid phase and DOX in the aqueous phase. The liposomes were further modified with SP94 and BR2 peptides.

View Article and Find Full Text PDF

Purpose: Mitochondrial damage may lead to uncontrolled oxidative stress and massive apoptosis, and thus plays a pivotal role in the pathological processes of myocardial ischemia-reperfusion (I/R) injury. However, it is difficult for the drugs such as puerarin (PUE) to reach the mitochondrial lesion due to lack of targeting ability, which seriously affects the expected efficacy of drug therapy for myocardial I/R injury.

Methods: We prepared triphenylphosphonium (TPP) cations and ischemic myocardium-targeting peptide (IMTP) co-modified puerarin-loaded liposomes (PUE@T/I-L), which effectively deliver the drug to mitochondria and improve the effectiveness of PUE in reducing myocardial I/R injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!