Immunoglobulin E (IgE)-mediated allergy, which affects more than 30% of the population, is the most prevalent hypersensitivity illness. In an atopic individual, even a small amount of allergen exposure can cause IgE antibodies to be produced. Due to the engagement of receptors that are highly selective for IgE, even tiny amounts of allergens can induce massive inflammation. This study focuses on the exploration and characterization of the allergen potential of allergen (Ole e 9) affecting the population in Saudi Arabia. A systematic computational approach was performed to identify potential epitopes of allergens and complementary determining regions of IgE. In support, physiochemical characterization and secondary structure analysis unravel the structural conformations of allergens and active sites. Epitope prediction uses a pool of computational algorithms to identify plausible epitopes. Furthermore, the vaccine construct was assessed for its binding efficiency using molecular docking and molecular dynamics simulation studies, which led to strong and stable interactions. This is because IgE is known to play a role in allergic responses, which facilitate host cell activation for an immune response. Overall, the immunoinformatics analysis advocates that the proposed vaccine candidate is safe and immunogenic and therefore can be pushed as a lead for and investigations.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2224884DOI Listing

Publication Analysis

Top Keywords

comprehensive immunoinformatics
4
immunoinformatics study
4
study explore
4
explore characterize
4
characterize potential
4
potential vaccine
4
vaccine constructs
4
constructs ole
4
allergen
4
ole allergen
4

Similar Publications

Rocky Mountain Spotted Fever, caused by the gram-negative intracellular bacteria Rickettsia rickettsii, is a serious tick-borne infection with a fatality rate of 20-30%, if not treated. Since it is the most serious rickettsial disease in North America, modified prevention and treatment strategies are of critical importance. In order to find new therapeutic targets and create multiepitope vaccines, this study integrated subtractive proteomics with reverse vaccinology.

View Article and Find Full Text PDF

Cryptococcosis is a lethal mycosis instigated by the pathogenic species Cryptococcus neoformans and Cryptococcus gattii, primarily affects the lungs, manifesting as pneumonia, and the brain, where it presents as meningitis. Mortality rate could reach 100% if infections remain untreated in cryptococcal meningitis. Treatment options for cryptococcosis are limited and and there are no licensed vaccines clinically available to treat or prevent cryptococcosis.

View Article and Find Full Text PDF

A Universal Multi-Epitope Vaccine Design Against Porcine Reproductive and Respiratory Syndrome Virus via Bioinformatics and Immunoinformatics Approaches.

Vet Sci

December 2024

Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China.

Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive disorders in sows and severe pneumonia in piglets, alongside immunosuppressive effects on the host. It poses a significant global threat to the swine industry, with no effective control measures currently available due to its complex pathogenesis and high variability. Conventional inactivated and attenuated vaccines provide inadequate protection and carry biosafety risks.

View Article and Find Full Text PDF

Leveraging computer-aided design and artificial intelligence to develop a next-generation multi-epitope tuberculosis vaccine candidate.

Infect Med (Beijing)

December 2024

Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China.

Background: Tuberculosis (TB) remains a global public health challenge. The existing Bacillus Calmette-Guérin vaccine has limited efficacy in preventing adult pulmonary TB, necessitating the development of new vaccines with improved protective effects.

Methods: Computer-aided design and artificial intelligence technologies, combined with bioinformatics and immunoinformatics approaches, were used to design a multi-epitope vaccine (MEV) against TB.

View Article and Find Full Text PDF

The coronavirus that causes serious acute respiratory syndrome. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still a major problem in public health and biomedicine. Even if there is no cure for it, the infection is still progressing naturally, and the only time that optimal treatment choices, such as doxycycline, work is at the beginning of the infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!