Background: Substance administration to laboratory animals necessitates careful consideration and planning in order to enhance agent distribution while reducing any harmful effects from the technique. There are numerous methods for administering cannabinoids; however, several parameters must be considered, including delivery frequency, volume of administration, vehicle, and the level of competence required for staff to use these routes properly. There is a scarcity of information about the appropriate delivery method for cannabinoids in animal research, particularly those that need the least amount of animal manipulation during the course of the investigation. This study aims to assess the feasibility and potential side effects of intraperitoneal and subcutaneous injection of CBD and THC using propylene glycol or Kolliphor in animal models. By evaluating the ease of use and histopathological side effects of these solvents, this study intends to help researchers better understand an accessible long-term delivery route of administration in animal experiments while minimizing the potential confounding effects of the delivery method on the animal.

Methods: Intraperitoneal and subcutaneous methods of systemic cannabis administration were tested in rat models. Subcutaneous delivery via needle injection and continuous osmotic pump release were evaluated using propylene glycol or Kolliphor solvents. In addition, the use of a needle injection and a propylene glycol solvent for intraperitoneal (IP) administration was investigated. Skin histopathological changes were evaluated following a trial of subcutaneous injections of cannabinoids utilizing propylene glycol solvent.

Discussion: Although IP delivery of cannabinoids with propylene glycol as solvent is a viable method and is preferable to oral treatment in order to reduce gastrointestinal tract degradation, it has substantial feasibility limitations. We conclude that subcutaneous delivery utilizing osmotic pumps with Kolliphor as a solvent provides viable and consistent route of administration for long-term systemic cannabinoid delivery in the preclinical context.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280893PMC
http://dx.doi.org/10.1186/s42238-023-00194-9DOI Listing

Publication Analysis

Top Keywords

propylene glycol
24
glycol kolliphor
12
intraperitoneal subcutaneous
12
delivery
9
kolliphor solvents
8
delivery cannabinoids
8
delivery method
8
side effects
8
route administration
8
subcutaneous delivery
8

Similar Publications

: This study aimed to evaluate the safety and efficacy of chitosan-based bioadhesive films for facilitating the topical delivery of curcumin in skin cancer treatment, addressing the pharmacokinetic limitations associated with oral administration. : The films, which incorporated curcumin, were formulated using varying proportions of chitosan, polyvinyl alcohol, Poloxamer 407, and propylene glycol. These films were assessed for stability, drug release, in vitro skin permeation, cell viability (with and without radiotherapy), and skin irritation.

View Article and Find Full Text PDF

Assessing the impact of device parameters on electronic cigarette aerosol dynamics: Comprehensive analysis of emission profiles and toxic chemical constituents.

Sci Total Environ

January 2025

Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea; School of Civil, Environmental, Resources and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea. Electronic address:

The toxicity of electronic cigarette (EC) aerosol is influenced not only by the type of e-liquid but also by various operational parameters of the device used to vaporize it. In this study, we utilized a flask and heating mantle system, instead of a conventional EC device, to systematically evaluate the effects of EC device operational parameters, including vaporization temperature, airflow rate, and the materials of coils and wicks, on the generated mass of EC aerosol and the production of toxic carbonyl compounds. The results demonstrated that these parameters significantly impact aerosol mass and toxicant composition.

View Article and Find Full Text PDF

The study focuses on the development of an in situ gelling dexamethasone (DEX) oromucosal formulation designed for the treatment of aphthous stomatitis. Three series of formulations were prepared; a first series containing DEX suspended, a second series containing DEX and, in addition, mint essential oil (EO), and a third series containing EO and DEX solubilized in propylene glycol (PG). In the composition, polymers in the role of mucoadhesive agent were interchanged (hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), methyl cellulose (MC), carboxymethyl cellulose (CMC), and sodium carboxymethyl cellulose (NaCMC).

View Article and Find Full Text PDF

The reaction mechanisms of ethylene oxide and propylene oxide with food Simulants: Based on experiments and computational analysis.

Food Res Int

February 2025

College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

Ethylene oxide (EO) and propylene oxide (PO) are widely used as sterilizing agents in the food industry. However, their residues in food packaging can migrate into food and react with it, affecting the accuracy of residue detection in food. This study aims to explore the reaction mechanisms between EO and PO and aqueous food simulants using both experimental and computational methods.

View Article and Find Full Text PDF

Background: Doxepin (DX) is used orally to relieve itching but can cause side effects like blurred vision, dry mouth, and drowsiness due to its antimuscarinic effect. To reduce these adverse effects and improve skin permeation, DX is being developed in topical formulations. This study aims to improve DX skin absorption by developing a microemulsion (ME) formulation (ME-DX).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!