Reproductive traits play a vital role in determining the production efficiency of sheep. Maximizing the production is of paramount importance for breeders worldwide due to the growing population. Circular RNAs (circRNAs) act as miRNA sponges by absorbing miRNA activity through miRNA response elements (MREs) and participate in ceRNA regulatory networks (ceRNETs) to regulate mRNA expression. Despite of extensive research on role of circRNAs as miRNA sponges in various species, their specific regulatory roles and mechanism in sheep ovarian tissue are still not well understood. In this study, we performed whole genome sequencing of circRNAs, miRNA and mRNA employing bioinformatic techniques on ovine tissues of two contrasting sheep breeds "Small tail Han (X_LC) and Dolang sheep (D_LC)", which results into identification of 9,878 circRNAs with a total length of 23,522,667 nt and an average length of 2,381.32 nt. Among them, 44 differentially expressed circRNAs (DECs) were identified. Moreover, correlation between miRNA-mRNA and lncRNA-miRNA provided us with to prediction of miRNA binding sites on nine differentially expressed circRNAs and 165 differentially expressed mRNAs using miRanda. miRNA-mRNA and lncRNA-miRNA pairs with negative correlation were selected to determine the ceRNA score along with positively correlated pairs from lncRNA and mRNA network. Integration of ceRNA score and positively correlated pairs exhibit a significant ternary relationship among circRNAs-miRNA-mRNA demonestrated by ceRNA, comprising of 50 regulatory pairs sharring common nodes and predicted potential differentially expressed circRNAs-miRNAs-mRNAs regulatory axis. Based on functional enrichment analysis shortlisted key ceRNA regulatory pairs associated with reproduction including circRNA_3257-novel579_mature-EPHA3, circRNA_8396-novel130_mature-LOC101102473, circRNA_4140- novel34_mature > novel661_mature-KCNK9, and circRNA_8312-novel339_mature-LOC101110545. Furthermore, expression profiling, functional enrichments and qRT-PCR analysis of key target genes infer their implication in reproduction and metabolism. ceRNA target mRNAs evolutionary trajectories, expression profiling, functional enrichments, subcellular localizations following genomic organizations will provide new insights underlying molecular mechanisms of reproduction, and establish a solid foundation for future research. Graphical abstract summarizing the scheme of study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280924 | PMC |
http://dx.doi.org/10.1186/s13048-023-01178-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!