County augmented transformer for COVID-19 state hospitalizations prediction.

Sci Rep

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.

Published: June 2023

The prolonged COVID-19 pandemic has tied up significant medical resources, and its management poses a challenge for the public health care decision making. Accurate predictions of the hospitalizations are crucial for the decision makers to make informed decision for the medical resource allocation. This paper proposes a method named County Augmented Transformer (CAT). To generate accurate predictions of four-week-ahead COVID-19 related hospitalizations for every states in the United States. Inspired by the modern deep learning techniques, our method is based on a self-attention model (known as the transformer model) that is actively used in Natural Language Processing. Our transformer based model can capture both short-term and long-term dependencies within the time series while enjoying computational efficiency. Our model is a data based approach that utilizes the publicly available information including the COVID-19 related number of confirmed cases, deaths, hospitalizations data, and the household median income data. Our numerical experiments demonstrate the strength and the usability of our model as a potential tool for assisting the medical resources allocation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10282074PMC
http://dx.doi.org/10.1038/s41598-023-36378-9DOI Listing

Publication Analysis

Top Keywords

county augmented
8
augmented transformer
8
medical resources
8
accurate predictions
8
model
5
transformer
4
covid-19
4
transformer covid-19
4
covid-19 state
4
hospitalizations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!