Cadmium (Cd) pollution endangers the safe utilization of paddy soils, and foliar zinc (Zn) can reduce the toxic effects of Cd. However, little is known about the effects of foliar Zn application on the transport and immobilization of Cd in key rice tissues and the physiological state of rice plants. A pot experiment was conducted to explore the effects of spraying 0.2% and 0.4% Zn (ZnSO) during the early grain-filling stage on Cd transport in rice, photosynthesis, glutathione (GSH) levels, Cd concentrations in xylem sap, and the expression of Zn transporter genes. The results showed that grain Cd concentrations in the 0.2% Zn and 0.4% Zn treatments were 24% and 31% lower, respectively, than those of the control treatments at maturity. Compared with the control treatments, the 0.4% Zn treatment increased Cd by 60%, 69%, 23%, and 22% in husks, rachises, first internodes, and roots, respectively. Application of Zn reduced xylem Cd content by up to 26% and downregulated transporter genes (OSZIP12, OSZIP4, and OSZIP7a) in flag leaves. Foliar Zn increased Cd bioaccumulation in roots while decreasing Cd bioaccumulation in grains. Zn reduced GSH concentration in flag leaves and stems, inhibiting photosynthesis (intercellular CO concentration, transpiration rate). Taken together, foliar Zn can reduce the expression of Zn transporter genes and the mobility of Cd in the xylem, promoting the fixation of Cd in husks, rachises, first internodes, and roots, ultimately reducing Cd concentration in rice grains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.122046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!