Potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) harm the ecosystem and human health, especially in urban areas. Identifying and understanding their potential sources and underlying interactions in urban soils are critical for informed management and risk assessment. This study investigated the potential sources and the spatially varying relationships between 9 PTEs and PAHs in the topsoil of Dublin by combining positive matrix factorisation (PMF) and geographically weighted regression (GWR). The PMF model allocated four possible sources based on species concentrations and uncertainties. The factor profiles indicated the associations with high-temperature combustion (PAHs), natural lithologic factors (As, Cd, Co, Cr, Ni), mineralisation and mining (Zn), as well as anthropogenic inputs (Cu, Hg, Pb), respectively. In addition, selected representative elements Cr, Zn, and Pb showed distinct spatial interactions with PAHs in the GWR model. Negative relationships between PAHs and Cr were observed in all samples, suggesting the control of Cr concentrations by natural factors. Negative relationships between PAHs and Zn in the eastern and north-eastern regions were related to mineralisation and anthropogenic Zn-Pb mining. In contrast, the surrounding regions exhibited a natural relationship between these two variables with positive coefficients. Increasing positive coefficients from west to east were observed between PAHs and Pb in the study area. This special pattern was consistent with prevailing south-westerly wind direction in Dublin, highlighting the predominant influences on PAHs and Pb concentrations from vehicle and coal combustion through atmospheric deposition. Our results provided a better understanding of geochemical features for PTEs and PAHs in the topsoil of Dublin, demonstrating the efficiency of combined approaches of receptor models and spatial analysis in environmental studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.122034 | DOI Listing |
World J Microbiol Biotechnol
January 2025
College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China.
This paper developed an efficient microbial activator formula and conducted an in-depth study on its efficacy and mechanism in promoting the degradation of petroleum hydrocarbons in oil-contaminated soil. A 60-day microbial remediation experiment conducted on oily soil revealed that the microbial activators significantly boosted the activities of dehydrogenase and catalase, subsequently speeding up the degradation of petroleum hydrocarbons in the soil. The overall degradation rate reached as high as 71.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, US.
The opioid crisis, driven by synthetic opioids like fentanyl, demands innovative solutions. The opioid antidote naloxone has a short action ( ~ 1 hour), requiring repeated doses. To address this, we present a new and simple naloxone prodrug delivery system repurposing a hydrophilic derivative of acoramidis, a potent transthyretin ligand.
View Article and Find Full Text PDFSci Total Environ
January 2025
Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany.
This study evaluates the distribution and sources of thermogenic organic matter in the Baltic Sea water column, focusing on polycyclic aromatic hydrocarbons (PAH), dissolved black carbon (DBC), and the imprint of thermogenic organic matter on the dissolved organic matter (DOM) pool. The spatial patterns and complex interactions between land-based and atmospheric sources were assessed from Kiel Bay to Pomeranian Bight within the water column with the combined targeted and untargeted approaches. The findings emphasize the significant influence of terrestrial inputs from the Oder River and autochthonous production composing DOM.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of watershed Management, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Noor, Iran.
Oil pollution in marine environments, particularly along the southern coasts of the Caspian Sea, has become a serious issue due to anthropogenic activities such as shipping, tourism, fishing, and urban development. This study aimed to assess the concentration and origin of PAHs, n-alkanes, hopanes, and steranes in sediment samples (coastal area and coastal line) and resin pellets collected from 30 stations along the southern shores of the Caspian Sea (Golestan, Mazandaran, and Gilan provinces). The results showed that PAHs concentrationranged from 530.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
Department of Mathematics & Actuarial Science, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, 600048, India. Electronic address:
Topological indices are numerical invariants that provide key insights into the structural properties of molecular graphs and are crucial in predicting physio-chemical and biological activities. This paper applies established computational methodologies for analyzing benzenoid networks and their application to polycyclic aromatic hydrocarbons (PAHs) through degree-based topological indices computed via M-polynomial and NM-polynomial approaches. By examining tessellations, including linear chain, hexagonal, rhomboidal, and triangular configurations alongside their line graphs, this work highlights the influence of molecular topology on biological activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!