Representation of time-varying and time-invariant EMR data and its application in modeling outcome prediction for heart failure patients.

J Biomed Inform

School of Biomedical Engineering, Capital Medical University, No.10, Xitoutiao, You An Men, Fengtai District, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, No.10, Xitoutiao, You An Men, Fengtai District, Beijing 100069, China. Electronic address:

Published: July 2023

Objective: To represent a patient record with both time-invariant and time-varying features as a single vector using an end-to-end deep learning model, and further to predict the kidney failure (KF) status and mortality of heart failure (HF) patients.

Materials And Methods: The time-invariant EMR data included demographic information and comorbidities, and the time-varying EMR data were lab tests. We used a Transformer encoder module to represent the time-invariant data, and refined a long short-term memory (LSTM) with a Transformer encoder attached to the top to represent the time-varying data, taking the original measured values and their corresponding embedding vectors, masking vectors, and two types of time intervals as inputs. The proposed representations of patients with time-invariant and time-varying data were used to predict KF status (949 out of 5268 HF patients diagnosed with KF) and mortality (463 in-hospital deaths) for HF patients. Comparative experiments were conducted between the proposed model and some representative machine learning models. Ablation experiments were also performed around the time-varying data representation, including replacing the refined LSTM with the standard LSTM, GRU-D and T-LSTM, respectively, and removing the Transformer encoder and the time-varying data representation module, respectively. The visualization of the attention weights of the time-invariant and time-varying features was used to clinically interpret the predictive performance. We used the area under the receiver operating characteristic curve (AUROC), the area under the precision-recall curve (AUPRC), and the F1-score to evaluate the predictive performance of the models.

Results: The proposed model achieved superior performance, with average AUROCs, AUPRCs and F1-scores of 0.960, 0.610 and 0.759 for KF prediction and 0.937, 0.353 and 0.537 for mortality prediction, respectively. Predictive performance improved with the addition of time-varying data from longer time periods. The proposed model outperformed the comparison and ablation references in both prediction tasks.

Conclusions: Both time-invariant and time-varying EMR data of patients could be efficiently represented by the proposed unified deep learning model, which shows higher performance in clinical prediction tasks. The way to use time-varying data in the current study is hopeful to be used in other kinds of time-varying data and other clinical tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbi.2023.104427DOI Listing

Publication Analysis

Top Keywords

time-varying data
28
emr data
16
time-invariant time-varying
16
data
12
transformer encoder
12
proposed model
12
predictive performance
12
time-varying
11
time-invariant emr
8
heart failure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!