Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Several coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human coronavirus OC43 (HCoV-OC43), can cause respiratory infections in humans. To address the need for reliable anti-coronavirus therapeutics, we screened 16 active phytochemicals selected from medicinal plants used in traditional applications for respiratory-related illnesses.
Methods: An initial screen was completed using HCoV-OC43 to identify compounds that inhibit virus-induced cytopathic effect (CPE) and cell death inhibition. Then the top hits were validated in vitro against both HCoV-OC43 and SARS-CoV-2 by determining virus titer in cell supernatant and virus-induced cell death. Finally, the most active phytochemical was validated in vivo in the SARS-CoV-2-infected B6.Cg-Tg(K18-ACE2)2Prlmn/J mouse model.
Results: The phytochemicals lycorine (LYC), capsaicin, rottlerin (RTL), piperine and chebulinic acid (CHU) inhibited HCoV-OC43-induced cytopathic effect and reduced viral titres by up to 4 log. LYC, RTL and CHU also suppressed virus replication and cell death following SARS-CoV-2 infection. In vivo, RTL significantly reduced SARS-CoV-2-induced mortality by ∼40% in human angiotensin-converting enzyme 2 (ACE2)-expressing K18 mice.
Conclusion: Collectively, these studies indicate that RTL and other phytochemicals have therapeutic potential to reduce SARS-CoV-2 and HCoV-OC43 infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277159 | PMC |
http://dx.doi.org/10.1016/j.ijantimicag.2023.106893 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!