Plasma and cerebrospinal fluid nonenzymatic protein damage is sustained in Alzheimer's disease.

Redox Biol

Cognitive Disorders Unit, Clinical Neuroscience Research, Hospital Universitari Santa Maria, IRBLleida, Lleida, Spain. Electronic address:

Published: August 2023

Background: Oxidative stress is considered to play an important role in the pathogenesis of Alzheimer's disease (AD). It has been observed that oxidative damage to specific protein targets affecting particular functional networks is one of the mechanisms by which oxidative stress contributes to neuronal failure and consequently loss of cognition and AD progression. Studies are lacking in which oxidative damage is measured at both systemic and central fluid levels and in the same cohort of patients. We aimed to determine the levels of both plasma and cerebrospinal fluid (CSF) nonenzymatic protein damage in patients in the continuum of AD and to evaluate the relation of this damage with clinical progression from mild cognitive impairment (MCI) to AD.

Methods: Different markers of nonenzymatic post-translational protein modification, mostly from oxidative processes, were detected and quantified in plasma and CSF by isotope dilution gas chromatography‒mass spectrometry using selected ion monitoring (SIM-GC/MS) for 289 subjects: 103 AD, 92 MCI, and 94 control subjects. Characteristics of the study population such as age, sex, Mini-mental state examination, CSF AD biomarkers, and APOE ϵ4, were also considered.

Results: Forty-seven (52.8%) MCI patients progressed to AD during follow-up (58 ± 12.5 months). After controlling for age, sex, and APOE ϵ4 allele, plasma and CSF concentrations of protein damage markers were not associated with either diagnosis of AD or MCI. The CSF levels of nonenzymatic protein damage markers were associated with none of the CSF AD biomarkers. In addition, neither in CSF nor in plasma were the levels of protein damage associated with the MCI to AD progression.

Conclusion: The lack of association between both CSF and plasma concentrations of nonenzymatic protein damage markers and AD diagnosis and progression suggests that oxidative damage in AD is a pathogenic mechanism specifically expressed at the cell-tissue level, not in extracellular fluids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300255PMC
http://dx.doi.org/10.1016/j.redox.2023.102772DOI Listing

Publication Analysis

Top Keywords

protein damage
24
nonenzymatic protein
16
oxidative damage
12
damage markers
12
damage
10
plasma cerebrospinal
8
cerebrospinal fluid
8
protein
8
alzheimer's disease
8
oxidative stress
8

Similar Publications

Objectives: Cardiac biomarkers are useful for the diagnostic and prognostic assessment of myocardial injury (MI) and heart failure. By measuring specific proteins released into the bloodstream during heart stress or damage, these biomarkers help clinicians detect the presence and extent of heart injury and tailor appropriate treatment plans. This study aims to provide robust biological variation (BV) data for cardiac biomarkers in athletes, specifically focusing on those applied to detect or exclude MI, such as myoglobin, creatine kinase-myocardial band (CK-MB) and cardiac troponins (cTn), and those related to heart failure and cardiac dysfunction, brain natriuretic peptide (BNP) and N-terminal brain natriuretic pro-peptide (NT-proBNP).

View Article and Find Full Text PDF

Background: Histone H2B is highly expressed in many types of cancers and is involved in cancer development. H2B clustered histone 9 (H2BC9), a member of the H2B family, plays critical roles in gene expression regulation, chromosome structure, DNA repair stability, and cell cycle regulation. However, the diagnostic and prognostic value of H2BC9 in head and neck squamous cell carcinoma (HNSCC) remains unclear.

View Article and Find Full Text PDF

Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.

View Article and Find Full Text PDF

MC-LR induces and exacerbates Colitis in mice through the JAK1/STAT3 pathway.

J Toxicol Environ Health A

January 2025

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.

Inflammatory bowel disease (IBD) is a complex gastrointestinal disorder attributed to genetic and environmental factors. Microcystin-leucine-arginine (MC-LR) is an environmental toxin that accumulates in the gut and produces intestinal damage. The aim of this study was to investigate the effects of exposure to MC-LR on development and progression of IBD as well examine the underlying mechanisms of microcystin-initiated tissue damage.

View Article and Find Full Text PDF

The incidence of obesity is increasing annually worldwide. A high-fat diet (HFD) causes intestinal barrier damage, but effective interventions are currently unavailable. Our previous work demonstrated the therapeutic effect of nobiletin on obese mice; thus, we hypothesized that nobiletin could reverse HFD-induced damage to the intestinal barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!