The BRCA1-BARD1 complex is a crucial tumor suppressor E3 ubiquitin ligase involved in DNA double-stranded break repair. The BRCA1-BARD1 RING domains interact with UBE2D3 through the BRCA1 interface and this complex flexibly tether to the nucleosome core particle (NCP), where BRCA1 and BARD1 interacts with histone H2A and H2B of NCP. Mutations in the BRCA1-BARD1 RING domains have been linked to familial breast and ovarian cancer. Seven mutations were analyzed to understand their effect on the binding interface of protein partners and changes in conformational dynamics. Molecular dynamics simulations revealed that mutant complexes were less conformationally flexible than the wildtype complex. Protein-protein interaction profiling showed the importance of specific molecular interactions, hotspot and hub residues, and some of these were lost in the mutant complexes. Two mutations (BRCA1 and BARD1) hindered significant interaction between protein partners and may prevent signaling for ubiquitination of histones in NCP and other cellular targets. The structural compactness and reduced significant interaction in mutant complexes may be the possible reason of preventing ubiquitination and hinder DNA repair, resulting cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpc.2023.107070 | DOI Listing |
STAR Protoc
September 2024
Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA. Electronic address:
Mol Cell
October 2023
Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA. Electronic address:
The tumor-suppressor breast cancer 1 (BRCA1) in complex with BRCA1-associated really interesting new gene (RING) domain 1 (BARD1) is a RING-type ubiquitin E3 ligase that modifies nucleosomal histone and other substrates. The importance of BRCA1-BARD1 E3 activity in tumor suppression remains highly controversial, mainly stemming from studying mutant ligase-deficient BRCA1-BARD1 species that we show here still retain significant ligase activity. Using full-length BRCA1-BARD1, we establish robust BRCA1-BARD1-mediated ubiquitylation with specificity, uncover multiple modes of activity modulation, and construct a truly ligase-null variant and a variant specifically impaired in targeting nucleosomal histones.
View Article and Find Full Text PDFbioRxiv
June 2023
Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
Filament systems are comprised of fibrous and globular cytoskeletal proteins and are key elements regulating cell shape, rigidity, and dynamics. The cellular localization and assembly of neurofilaments depend on phosphorylation by kinases. The involvement of the BRCA1 (Breast cancer associated protein 1)/BARD1 (BRCA1-associated RING domain 1) pathways in Alzheimer disease (AD) is suggested by colocalization studies.
View Article and Find Full Text PDFBiophys Chem
September 2023
Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. Electronic address:
EMBO J
August 2023
Department of Biochemistry, University of Washington, Seattle, WA, USA.
BRCA1/BARD1 is a tumor suppressor E3 ubiquitin (Ub) ligase with roles in DNA damage repair and in transcriptional regulation. BRCA1/BARD1 RING domains interact with nucleosomes to facilitate mono-ubiquitylation of distinct residues on the C-terminal tail of histone H2A. These enzymatic domains constitute a small fraction of the heterodimer, raising the possibility of functional chromatin interactions involving other regions such as the BARD1 C-terminal domains that bind nucleosomes containing the DNA damage signal H2A K15-Ub and H4 K20me0, or portions of the expansive intrinsically disordered regions found in both subunits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!