Hybridization Chain Reaction-Enhanced Biocatalytic Precipitation on Flower-like BiS: Toward Organic Photoelectrochemical Transistor Aptasensing with High Transconductance.

Anal Chem

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Published: July 2023

Organic photoelectrochemical transistor (OPECT) bioanalysis has recently emerged as a promising avenue for biomolecular sensing, providing insight into the next-generation of photoelectrochemical biosensing and organic bioelectronics. Herein, this work validates the direct enzymatic biocatalytic precipitation (BCP) modulation on a flower-like BiS photosensitive gate for high-efficacy OPECT operation with high transconductance (), which is exemplified by a prostate-specific antigen (PSA)-dependent hybridization chain reaction (HCR) and subsequent alkaline phosphatase (ALP)-enabled BCP reaction toward PSA aptasensing. It has been shown that light illumination could ideally achieve the maximized at zero gate bias, and BCP could efficiently modulate the device's interfacial capacitance and charge-transfer resistance, resulting in a significantly changed channel current (). The as-developed OPECT aptasensor realizes good analysis performance for PSA with a detection limit of 10 fg mL. This work features direct BCP modulation of organic transistors and is expected to stimulate further interest in exploring advanced BCP-interfaced bioelectronics with unknown possibilities.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c01185DOI Listing

Publication Analysis

Top Keywords

hybridization chain
8
biocatalytic precipitation
8
flower-like bis
8
organic photoelectrochemical
8
photoelectrochemical transistor
8
high transconductance
8
bcp modulation
8
chain reaction-enhanced
4
reaction-enhanced biocatalytic
4
precipitation flower-like
4

Similar Publications

Calcitonin gene-related peptide (CGRP) biases Langerhans cell (LC) Ag presentation to CD4 T cells towards Th17-type immunity through actions on endothelial cells (ECs). We now report further evidence that IL-6 signalling at responding T cells mediates this effect. This CGRP effect was absent with ECs from IL-6 KO mice.

View Article and Find Full Text PDF

Hybrid Soft Segments Boost the Development of Ultratough Thermoplastic Elastomers with Tunable Hardness.

Adv Mater

January 2025

National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China.

The hardness of thermoplastic elastomers (TPEs) significantly influences their suitability for various applications, but traditionally, enhancing hardness reduces toughness. Herein a method is introduced that leverages hybrid soft segments to fine-tune the hardness of TPEs without compromising their exceptional toughness. Through the selective copolymerization of polytetramethylene ether glycols (PTMEGs) at various molecular weights, supramolecular poly(urethane-urea) TPEs are molecularly engineered to cover a wide spectrum of hardness while retaining good toughness.

View Article and Find Full Text PDF

To enhance the drying quality of peony flowers, this study developed an integrated intelligent control and monitoring system. The system incorporates computer vision technology to enable real-time continuous monitoring and analysis of the total color change (ΔE) and shrinkage rate (SR) of the material. Additionally, by integrating drying time and temperature data, a hybrid neural network model combining convolutional neural networks, long short-term memory, and attention mechanisms (CNN-LSTM-Attention) was employed to accurately predict the moisture ratio (MR) of peony flowers.

View Article and Find Full Text PDF

Atherosclerosis (ATH) represents a major cause of cardiovascular disease. Long noncoding RNA (LncRNA) myocardin-induced smooth muscle lncRNA, inducer of differentiation (MYOSLID) and microRNA (miR) -29c-3p show substantial roles in ATH. We investigated their regulatory mechanisms on vascular smooth muscle cell (VSMC) proliferation and migration.

View Article and Find Full Text PDF

Four aliphatic amino acids-α-aminobutyric acid (AABA), β-aminobutyric acid (BABA), α-aminoisobutyric acid (AAIBA) and β-aminoisobutyric acid (BAIBA) were investigated in water as a solvent by two quantum chemical methods. B3LYP hybrid version of DFT was used for geometry optimization and a full vibrational analysis of neutral molecules, their cations and anions in the canonical and zwitterionic forms (6 forms for each species). Ab initio DLPNO-CCSD(T) method was applied in the geometry pre-optimized by B3LYP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!