Highly sensitive ultrasound detection using nanofabricated polymer micro-ring resonators.

Nano Converg

Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.

Published: June 2023

Photoacoustic (PA) imaging enables noninvasive volumetric imaging of biological tissues by capturing the endogenous optical absorption contrast. Conventional ultrasound detectors using piezoelectric materials have been widely used for transducing ultrasound signals into the electrical signals for PA imaging reconstruction. However, their inherent limitations in detection bandwidth and sensitivity per unit area have unfortunately constrained the performance of PA imaging. Optical based ultrasound detection methods emerge to offer very promising solutions. In particular, polymer micro-ring resonators (MRRs) in the form of integrated photonic circuits (IPC) enable significant reduction for the sensing area to 80 μm in diameter, while maintaining highly sensitive ultrasound detection with noise equivalent pressure (NEP) of 0.49 Pa and a broad detection frequency range up to 250 MHz. The continued engineering innovation has further transformed MRRs to be transparent to the light and thus, opens up a wide range of applications, including multi-modality optical microscope with isometric resolution, PA endoscope, photoacoustic computed tomography (PACT), and more. This review article summarizes and discusses the evolution of polymer MRR design and the associated nanofabrication process for improving the performance of ultrasound detection. The resulting novel imaging applications will also be reviewed and discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281933PMC
http://dx.doi.org/10.1186/s40580-023-00378-2DOI Listing

Publication Analysis

Top Keywords

ultrasound detection
16
highly sensitive
8
sensitive ultrasound
8
polymer micro-ring
8
micro-ring resonators
8
ultrasound
6
detection
6
imaging
5
detection nanofabricated
4
nanofabricated polymer
4

Similar Publications

18F-Sodium Fluoride PET/CT as a Tool to Assess Enthesopathies in X-Linked Hypophosphatemia.

Calcif Tissue Int

January 2025

Endocrinology Department, School of Medicine, Pontificia Universidad Católica de Chile, Av. Diagonal Paraguay 262, Cuarto Piso, Santiago, Chile.

X-linked hypophosphatemia (XLH) is a rare metabolic disorder characterized by elevated FGF23 and chronic hypophosphatemia, leading to impaired skeletal mineralization and enthesopathies that are associated with pain, stiffness, and diminished quality of life. The natural history of enthesopathies in XLH remains poorly defined, partly due to absence of a sensitive quantitative tool for assessment and monitoring. This study investigates the utility of 18F-NaF PET/CT scans in characterizing enthesopathies in XLH subjects.

View Article and Find Full Text PDF

Objectives: To conduct a meta-analysis of the diagnostic performance of non-contrast magnetic resonance pulmonary angiography (NC-MRPA) and ventilation-perfusion (V/Q) scintigraphy for the detection of acute pulmonary embolism (PE).

Materials And Methods: Systematic searches of electronic databases were conducted from 2000 to 2024. Primary outcomes were per-patient sensitivity and specificity of NC-MRPA and V/Q scintigraphy.

View Article and Find Full Text PDF

We intended to investigate the potential of several transitional zone (TZ) volume-related variables for the detection of clinically significant prostate cancer (csPCa) among lesions scored as Prostate Imaging Reporting and Data System (PI-RADS) category 3. Between September 2018 and August 2023, patients who underwent mpMRI examination and scored as PI-RADS 3 were queried from our institution. The diagnostic performances of prostate-specific antigen density (PSAD), TZ-adjusted PSAD (TZPSAD), and TZ-ratio (TZ volume/whole gland prostate volume) were analyzed.

View Article and Find Full Text PDF

Breast cancer is one of the most aggressive types of cancer, and its early diagnosis is crucial for reducing mortality rates and ensuring timely treatment. Computer-aided diagnosis systems provide automated mammography image processing, interpretation, and grading. However, since the currently existing methods suffer from such issues as overfitting, lack of adaptability, and dependence on massive annotated datasets, the present work introduces a hybrid approach to enhance breast cancer classification accuracy.

View Article and Find Full Text PDF

The current work introduces the hybrid ensemble framework for the detection and segmentation of colorectal cancer. This framework will incorporate both supervised classification and unsupervised clustering methods to present more understandable and accurate diagnostic results. The method entails several steps with CNN models: ADa-22 and AD-22, transformer networks, and an SVM classifier, all inbuilt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!