Tuojiang River watershed is an economically developed and densely populated area in Sichuan Province (southwest of China), which is also an important tributary of the Yangtze River. Nitrogen (N) and phosphorus (P) are the main pollutants affecting water quality, but there is still lack of study on the spatial and temporal distribution characteristics of these two pollutants. In this study, the typical non-point source pollution loads in the Tuojiang River watershed are simulated by Soil and Water Assessment Tool (SWAT) model, and the spatial autocorrelation method is used to reveal the spatial and temporal distribution characteristics of the pollution loads from the annual average and water periods. Combined with redundancy analysis (RDA) and geographically weighted regression (GWR) analysis, the main driving factors affecting the typical non-point source pollution loads in the Tuojiang River watershed are discussed from the global and local perspectives. The results show that (1) from different water periods, the pollution loads of total nitrogen (TN) and total phosphorus (TP) in three water periods show obviously different, is the highest in the abundant water period, with 323.4 kg/ha and 47.9 kg/ha, followed by the normal water period, with 95.7 kg/ha and 14.1 kg/ha, and the lowest in the dry water period, with 28.4 kg/ha and 4.2 kg/ha. The annual average value of TN pollution load is higher than that of TP, with 447.5 kg/ha and 66.1 kg/ha, respectively; (2) the TN and TP pollution loads are stable on the whole, and the overall level in the middle reaches is higher. The pollution loads of Shifang City and Mianzhu City are higher in all three water periods. (3) Elevation and slope are two main driving factors affecting the TN and TP pollution loads in the Tuojiang River watershed. Therefore, the visualization and quantification of temporal and spatial distribution characteristics of typical non-point source pollution loads in the Tuojiang River watershed are helpful to provide the basis for scientific prevention and control of pollution in the Tuojiang River watershed and are of great significance to promote the sustainable, coordinated, and healthy development of water environment and economy in the watershed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-023-11481-6 | DOI Listing |
Nanoscale
January 2025
School of Chemistry and Chemical Engineering, School of the Environment, State Key Laboratory of Pollution Control & Resource Reuse, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
The escalating global fecal waste and rising CO levels present dual significant environmental challenges, further intensified by urbanization. Traditional fecal waste management methods are insufficient, particularly in addressing the related health risks and environmental threats. This study explores the synthesis of biochar from pig manure as a carbon substrate to disperse and stabilize Cu nanoparticles, resulting in the formation of an efficient Cu-NB-2000 electrocatalyst for electrocatalytic CO reduction (ECR).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Environmental Science and Engineering, Shenzhen Key Laboratory of Municipal Solid Waste Recycling Technology and Management, Southern University of Science and Technology, Shenzhen 518055, China.
Solid-liquid biphasic absorbents are a promising solution for overcoming the high-energy consumption challenge faced by liquid amine-based CO capture technologies. However, their practical applications are often hindered by difficulties in separating viscous solid-phase products. This study introduces a novel nonaqueous absorbent system (PD/PZ/NMP) composed of 4-amino-1-methylpiperidine (PD), piperazine (PZ), and -methyl-2-pyrrolidone (NMP), engineered to produce easily separable powdery products.
View Article and Find Full Text PDFDalton Trans
January 2025
Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.
The electrochemical nitrate reduction reaction (NORR) is considered as a promising strategy for addressing environmental pollution and sustainable energy development. In this study, prism-like CuO loaded on copper foam (CuO/CF) was synthesized in a simple solvothermal reaction and an electrochemical reconstruction process. The electrochemical reconstruction process facilitates the formation of a CuO lattice structure on copper foam derived from FU-CF generated by the reaction of copper foam and fumaric acid (HFU) in DMF.
View Article and Find Full Text PDFThis work aimed at addressing the problem of hexavalent chromium pollution in the water environment, designing and preparing the Cu/CuO/NH-MIL-88B (Fe) heterojunction material with NH-MIL-88B (Fe) as the carrier, Cu/CuO was loaded on NH-MIL-88B (Fe) by light-assisted reduction. The loading of CuO effectively improves the visible light absorption capacity of the composite material. The SPR effect of Cu improves the separation and transfer of photogenerated carriers in the composite material.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa, 16417, Ethiopia.
Many approaches have been implemented in order to reduce the emissions of particular pollutants without compromising engine performance. Cotton and castor mixed seed oil was chosen for the current study due to their distinct fatty acid composition and potential as a feedstock for bio-additives. Three fuel samples-99 % diesel and 1 % blended fuel (cottonseed oil + castor seed oil), 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!