Fungi harboring lignocellulolytic activity accelerate the composting process of agricultural wastes; however, using thermophilic fungal isolates for this process has been paid little attention. Moreover, exogenous nitrogen sources may differently affect fungal lignocellulolytic activity. A total of 250 thermophilic fungi were isolated from local compost and vermicompost samples. First, the isolates were qualitative assayed for ligninase and cellulase activities using Congo red (CR) and carboxymethyl cellulose (CMC) as substrates, respectively. Then, twenty superior isolates harboring higher ligninase and cellulase activities were selected and quantitatively assayed for both enzymes in basic mineral (BM) liquid medium supplemented with the relevant substrates and nitrogen sources including (NH)SO (AS), NHNO (AN), urea (U), AS + U (1:1), or AN + U (1:1) with final nitrogen concentration of 0.3 g/L. The highest ligninase activities of 99.94, 89.82, 95.42, 96.25, and 98.34% of CR decolorization were recorded in isolates VC85, VC94, VC85, C145, and VC85 in the presence of AS, U, AS + U, AN, and AN + U, respectively. Mean ligninase activity of 63.75% in superior isolates was achieved in the presence of AS and ranked the highest among other N compounds. The isolates C200 and C184 exhibited the highest cellulolytic activity in the presence of AS and AN + U by 8.8 and 6.5 U/ml, respectively. Mean cellulase activity of 3.90 U/mL was achieved in AN + U and ranked the highest among other N compounds. Molecular identification of twenty superior isolates confirmed that all of them are belonging to Aspergillus fumigatus group. Focusing on the highest ligninase activity of the isolate VC85 in the presence of AS, the combination can be recommended as a potential bio-accelerator for compost production.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12223-023-01065-9DOI Listing

Publication Analysis

Top Keywords

nitrogen sources
12
ligninase cellulase
12
cellulase activities
12
superior isolates
12
thermophilic fungi
8
fungi isolated
8
compost vermicompost
8
lignocellulolytic activity
8
twenty superior
8
as + u an + u
8

Similar Publications

Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.

View Article and Find Full Text PDF

Strain LCG007, isolated from Lu Chao Harbor's intertidal water, phylogenetically represents a novel genus within the family Rhodobacteraceae. Metabolically, it possesses a wide array of amino acid metabolic genes that enable it to thrive on both amino acids or peptides. Also, it could hydrolyze peptides containing D-amino acids, highlighting its potential role in the cycling of refractory organic matter.

View Article and Find Full Text PDF

Grasslands cover approximately a third of the Earth's land surface and account for about a third of terrestrial carbon storage. Yet, we lack strong predictive models of grassland plant biomass, the primary source of carbon in grasslands. This lack of predictive ability may arise from the assumption of linear relationships between plant biomass and the environment and an underestimation of interactions of environmental variables.

View Article and Find Full Text PDF

Nitrogen-doped carbon quantum dots from pumpkin for the sensing of nifuratel and temperature.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619 PR China.

Herein, nitrogen doped carbon quantum dots (N-CQDs) were synthesized using a hydrothermal strategy. The raw materials for the preparation of N-CQDs were sourced from pumpkin and melamine. The N-CQDs suggested fascinating water solubility, favorable UV and salt resistance stability.

View Article and Find Full Text PDF

New strategy for the utilization of invasive species: A tert-butylhydroquinone electrochemical platform based on Solidago canadensis L.

Food Chem

January 2025

Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China; School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China. Electronic address:

Tert-butylhydroquinone (TBHQ) is a widely used synthetic phenolic antioxidant found in edible oils and other fried foods. Nevertheless, the excess use of TBHQ can reduce food quality and impact public health. In this paper, we reported the synthesis of a nanocomposite consisting of carbon and nitrogen co-doped nickel oxide (NiO-N/C-700), which was used to modify a pencil graphite electrode for the sensitive detection of TBHQ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!