Rapid and successful clinical diagnosis and bacterial infection treatment depend on accurate identification and differentiation between different pathogenic bacterial species. A lot of efforts have been made to utilize modern techniques which avoid the laborious work and time-consuming of conventional methods to fulfill this task. Among such techniques, laser-induced breakdown spectroscopy (LIBS) can tell much about bacterial identity and functionality. In the present study, a sensitivity-improved version of LIBS, i.e. nano-enhanced LIBS (NELIBS), has been used to discriminate between two different bacteria (Pseudomonas aeruginosa and Proteus mirabilis) belonging to different taxonomic orders. Biogenic silver nanoparticles (AgNPs) are sprinkled onto the samples' surface to have better discrimination capability of the technique. The obtained spectroscopic results of the NELIBS approach revealed superior differentiation between the two bacterial species compared to the results of the conventional LIBS. Identification of each bacterial species has been achieved in light of the presence of spectral lines of certain elements. On the other hand, the discrimination was successful by comparing the intensity of the spectral lines in the spectra of the two bacteria. In addition, an artificial neural network (ANN) model has been created to assess the variation between the two data sets, affecting the differentiation process. The results revealed that NELIBS provides higher sensitivity and more intense spectral lines with increased detectable elements. The ANN results showed that the accuracy rates are 88% and 92% for LIBS and NELIBS, respectively. In the present work, it has been demonstrated that NELIBS combined with ANN successfully differentiated between both bacteria rapidly with high precision compared to conventional microbiological discrimination techniques and with minimum sample preparation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281934 | PMC |
http://dx.doi.org/10.1186/s13568-023-01569-0 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Aix-Marseille Université-CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille 13009, France.
Despite growing awareness of their importance in soil ecology, the genetic and physiological traits of bacterial predators are still relatively poorly understood. In the course of a predator evolution experiment, we identified a class of genotypes leading to enhanced predation against diverse species. RNA-seq analysis demonstrated that this phenotype is linked to the constitutive activation of a predation-specific program.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America.
Root and rhizosphere studies often focus on analyzing single-plant microbiomes, with the literature containing minimum empirical information about the shared rhizosphere microbiome of multiple plants. Here, the rhizosphere of individual plants was analyzed in a microcosm study containing different combinations and densities (1-3 plants, 24 plants, and 48 plants) of cover crops: Medicago sativa, Brassica sp., and Fescue sp.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Microorganisms, Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
A Gram-stain-positive, facultatively anaerobic, rod-shaped strain, designated SPB1-3, was isolated from tree bark. This strain exhibited heterofermentative production of dl-lactic acid from glucose. Optimal growth was observed at 25-40 °C, pH 4.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
A Gram-stain-negative, aerobic and rod-shaped bacterium, designated as HZG-20, was isolated from a tidal flat in Zhoushan, Zhejiang Province, China. The 16S rRNA sequence similarities between strain HZG-20 and RR4-56, NNCM2, P31 and X9-2-2 were 98.9, 91.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!