Background: Upper motor neuron (UMN) and lower motor neuron (LMN) involvement represent the core clinical features of amyotrophic lateral sclerosis (ALS). Several studies divided patients into prevalent UMN and LMN impairment phenotypes to investigate the association between motor systems impairments and ALS clinical course. However, this distinction was somehow heterogeneous and significantly affected the comparability across studies.
Aims: This study aimed to investigate whether patients spontaneously segregate based on the extent of UMN and LMN involvement without a-priori categorization and to identify potential clinical and prognostic features of different clusters.
Methods: Eighty-eight consecutive spinal-onset ALS patients were referred to an ALS tertiary center between 2015 and 2022. UMN and LMN burden was assessed with the Penn Upper Motor Neuron scale (PUMNS) and the Devine score, respectively. PUMNS and LMN scores were normalized into 0-1 and analyzed using a two-step cluster analysis and the Euclidean distance measure. The Bayesian Information Criterion was used to determine the cluster number. Demographic and clinical variables were tested for differences among the clusters.
Results: Three distinct clusters emerged at cluster analysis. Patients in "cluster-1" showed moderate UMN and severe LMN involvement, corresponding to the typical ALS phenotype. Patients in "cluster-2" showed mild LMN and severe UMN damage, corresponding to a predominant UMN phenotype, while "cluster-3" patients showed mild UMN and moderate LMN damage, corresponding to a predominant LMN phenotype. Patients in "cluster-1" and "cluster-2" showed a higher prevalence of definite ALS than those in "cluster-3" (61% and 46 vs 9%, p < 0.001). "Cluster-1" patients had a lower median ALSFRS-r score compared to both "cluster-2" and 3 patients (27 vs 40 and 35, < 0.001). "Cluster-1" (HR: 8.5; 95% CI 2.1-35.1 and p = 0.003) and 3 (HR: 3.2; 95% CI 1.1-9.1; p = 0.03) were associated with shorter survival than those in "cluster-2".
Conclusions: Spinal-onset ALS can be categorized into three groups according to LMN and UMN burden. The UMN burden is related to higher diagnostic certainty and broader disease spread, while LMN involvement is associated with higher disease severity and shorter survival.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00415-023-11827-7 | DOI Listing |
Acta Neuropathol Commun
January 2025
Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Life Science, Henan Normal University, Xinxiang 453007, China. Electronic address:
The widespread application of quantum dots (QDs) in recent years has raised concerns about potential environmental and human health risks. Although the toxicity of cadmium telluride quantum dots (CdTe QDs) has been partially studied, their effects on stem cells, tissue regeneration, neurodevelopment, and neurobehavioral toxicity remain unclear. This study aimed to investigate the combined toxic effects and mechanisms of CdTe QDs on planarians at the individual, tissue, cellular, and molecular levels.
View Article and Find Full Text PDFBiomater Adv
December 2024
Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China. Electronic address:
Spinal cord injury (SCI) results in electrophysiological and behavioral dysfunction. Electrical stimulation (ES) is considered to be an effective treatment for mild SCI; however, ES is not applicable to severe SCI due to the disruption of electrical conduction caused by tissue defects. Therefore, the use of conductive materials to fill the defects and restore electrical conduction in the spinal cord is a promising therapeutic strategy.
View Article and Find Full Text PDFAutosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, the First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China.
Aims: Neuron death is caused primarily by apoptosis after spinal cord injury (SCI). Autophagy, as a cellular response, can maintain cellular homeostasis to reduce apoptosis. We aimed to investigate the effect and the mechanism of vimentin knockdown on autophagy and neural recovery after SCI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!