Vacancies pose a major challenge in the production of high-quality crystals, particularly at the nanoscale. To address this problem, we report a convenient strategy that involves volumetric lattice reconstruction and dynamic metal complex docking to produce ultrasmall (10 nm) and bright core-shell upconversion nanoparticles (UCNPs). This strategy involves the formation of lanthanide ion-oleic acid complexes during postannealing in solution, which effectively removes vacancies in nanocrystals. The removal of vacancies restricts the diffusion of lanthanide sensitizers and emitters within the core, thus minimizing surface quenching. Our volumetric lattice reconstruction strategy provides fundamental insights into lattice engineering and presents a general strategy for purifying functional nanocrystals for applications in fields such as single-molecule tracking, quantum optics, energy conversion, and others.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c01621 | DOI Listing |
Nat Commun
January 2025
Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, Canada.
Solar-driven CO reduction to value-added C chemicals is thermodynamically challenging due to multiple complicated steps. The design of active sites and structures for photocatalysts is necessary to improve solar energy efficiency. In this work, atomically dispersed Ru-O sites in RuInO are constructed by interior lattice anchoring of Ru.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
Understanding the oxygen evolution reaction (OER) mechanism is pivotal for improving the overall efficiency of water electrolysis. Despite methylammonium lead halide perovskites (MAPbX) have shown promising OER performance due to their soft-lattice nature that allows lattice-oxygen oxidation of active α-PbO layer surface, the role of A-site MA or X-site elements in the electrochemical reconstruction and OER mechanisms has yet to be explored. Here, it is demonstrated that the OER mechanism of perovskite@zeolite composites is intrinsically dominated by the A-site group of lead-halide perovskites, while the type of X-site halogen is crucial for the reconstruction kinetics of the composites.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Energy Engineering, Huanghuai University, Zhumadian 463000, China. Electronic address:
Herein, a novel liquid nitrogen quenching treatment is proposed to achieve multifaceted modulation involving morphological modulation, lattice tensile strain modulation, metal active centre coordination reconstruction and grain boundary construction within a series of intermetallic compounds modified on a carbon substrate (CoFe-550/C, CoNi-550/C and FeNi-550/C, where 550 refers to liquid nitrogen quenching temperature and C refers to the carbon substrate). Noteworthily, the optimising intermediate absorption/desorption process is achieved by multifaceted modulation. Consequently, CoFe-550/C, CoNi-550/C and FeNi-550/C demonstrate considerable overpotential for hydrogen evolution reaction (59.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.
Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.
Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.
Small
January 2025
Faculty of Materials Science and Engineering, Analysis and Testing Research Center, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Modulating electronic structure to balance the requirement of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for developing bifunctional catalysts. Herein, phase transformation engineering is utilized to separately regulate catalyst structure, and the designed NiFe@Ni/Fe-MnOOH schottky heterojunction exhibits remarkable bifunctional electrocatalytic activity with low overpotentials of 19 and 230 mV at 10 mA cm for HER and OER in 1M KOH, respectively. Meanwhile, an anion-exchange membrane water electrolyzer employing NiFe@Ni/Fe-MnOOH as electrodes shows low voltages of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!