The emission spectrum of a dye is given by the energy of all of the possible radiative transitions weighted by their probability. This spectrum can be altered with optical nanoantennas that are able to manipulate the decay rate of nearby emitters by modifying the local density of photonic states. Here, we make use of DNA origami to precisely place an individual dye at different positions around a gold nanorod and show how this affects the emission spectrum of the dye. In particular, we observe a strong suppression or enhancement of the transitions to different vibrational levels of the excitonic ground state, depending on the spectral overlap with the nanorod resonance. This reshaping can be used to experimentally extract the spectral dependence of the radiative decay rate enhancement. Furthermore, for some cases, we argue that the drastic alteration of the fluorescence spectrum could arise from the violation of Kasha's rule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c01818 | DOI Listing |
ACS Cent Sci
December 2024
Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, China, 100871.
ACS Cent Sci
December 2024
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
DNA computing leverages molecular reactions to achieve diverse information processing functions. Recently developed DNA origami registers, which could be integrated with DNA computing circuits, allow signal transmission between these circuits, enabling DNA circuits to perform complex tasks in a sequential manner, thereby enhancing the programming space and compatibility with various biomolecules of DNA computing. However, these registers support only single-write operations, and the signal transfer involves cumbersome and time-consuming register movements, limiting the speed of sequential computing.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
Angew Chem Int Ed Engl
December 2024
Nanjing University, Department of Biomedical Engineering, CHINA.
Biological systems utilize precise spatial organization to facilitate and regulate information transmission within signaling networks. Inspired by this, artificial scaffolds that enable delicate spatial arrangements are desirable to increase the local concentration of reactants, expedite specific interactions, and minimize undesired interference. In this study, we presented an integrated biosensing nanodevice, termed TRI-HCR, in which hybridization chain reaction (HCR) probes were precisely organized on a triangular DNA origami nanostructure (TRI) with finely-tuned distance, quantity, and pattern.
View Article and Find Full Text PDFAnal Methods
December 2024
Troy High School, 2200 Dorothy Ln, Fullerton, CA 92831, USA.
This paper explores how DNA nanotechnology enhances biosensors in medicine and pharmacology by taking advantage of the unique characteristics of DNA and the unique advantages of DNA origami technology. DNA origami allows the establishment of complex nanoobjects with precise size and complete molecular writability as well as the possibility of seamless integration and biocompatibility with biological systems. Utilizing this, the chemical denaturation of DNA chains allows for the combination of various functions, including organic fluorescence groups and photoreaction elements, This has allowed DNA origami to become a transformative tool in biotechnology and other fields because of its versatility, use in innovative applications improving the design and function of biosensors, and potential to provide greater possibilities for early disease diagnosis and personalized medicine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!