Establishing a stable and well conducting contacting material is critical for operando electron microscopy experiments of electrical and electrochemical devices at elevated temperatures. In this contribution, the nanostructure and electrical conductivity of ion beam deposited Pt are investigated both in vacuum and in oxygen as a function of temperature. Its microstructure is relatively stable up to a temperature of approx. 800°C and up to an applied current density of approx. 100 kA/cm . Its conductivity increases with temperature, attributed to densification, with changes in the hydrocarbon matrix being less important. Recommendations are provided with respect to the Pt deposition parameters in terms of maximizing stability and minimizing electrical resistance. RESEARCH HIGHLIGHTS: It is feasible to use ion beam deposited Pt as electrical contacting material in operando electron microscopy. The deposited Pt is relatively stable up to 800°C and approx. 100 kA/cm . The resistivity can be reduced by increasing the applied ion current during deposition and by thermal annealing at a temperature of 500°C in a few mbar of oxygen.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.24373DOI Listing

Publication Analysis

Top Keywords

contacting material
12
operando electron
12
electron microscopy
12
electrical contacting
8
material operando
8
microscopy experiments
8
elevated temperatures
8
ion beam
8
beam deposited
8
approx 100 ka/cm
8

Similar Publications

Background: The presence of mandibular third molars has been associated with the risk of mandibular fractures, highlighting the need for comprehensive studies considering the interaction with other mandibular structures. This study investigates how mandibular third molars and neighboring tissues can influence the structural fragility of the mandible using finite element analysis.

Material And Methods: A finite element analysis study following the guidelines proposed by RIFEM 1.

View Article and Find Full Text PDF

Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.

View Article and Find Full Text PDF

Structure and properties of chitosan plasticized with hydrophobic short-chain fatty acid cosolvent.

Int J Biol Macromol

January 2025

Research Institute of Interdisciplinary Science, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Extreme Conditions, Dongguan 523803, China. Electronic address:

The application of chitosan in packaging has always been limited due to its brittle and hygroscopic nature. In this study, hydrophobic short-chain fatty acids (SCFAs) were utilized to modify chitosan to overcome this issue. For the first time, hydrophobic SCFAs, typically hexanoic acid and its homologs, were found to be able to dissolve chitosan in water as well as its hydrophilic analog.

View Article and Find Full Text PDF

Research of mesoporous silica loaded lignin to enhance the anti-corrosion and anti-weathering performance of epoxy surface.

Int J Biol Macromol

January 2025

Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China. Electronic address:

A new type of filler was added to epoxy resin to prepare a composite coating with excellent corrosion and weathering resistance. The simple synthesis process and nonpolluting raw materials of this filler contribute to the development of green chemistry. Specifically, lignin was encapsulated in mesoporous silica, the synergistic effect between the two resulted in the formation of lignin/mesoporous silica composite particles (MSN-L) with excellent ultraviolet (UV) resistance.

View Article and Find Full Text PDF

An electrochemical aptasensor based on bimetallic carbon nanocomposites AuPt@rGO for ultrasensitive detection of adenosine on portable potentiostat.

Bioelectrochemistry

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, People's Republic of China. Electronic address:

Adenosine plays a crucial role in the cardiovascular and nervous systems of living organisms. Excessive adenosine can lead to arrhythmias or heart failure, making the accurate detection of adenosine highly valuable. Given the widespread use of sensors for detecting small molecules, we propose a sensitive electrochemical aptasensor for adenosine detection in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!