Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electrocatalytic urea synthesis via coupling N and CO provides an effective route to mitigate energy crisis and close carbon footprint. However, the difficulty on breaking N≡N is the main reason that caused low efficiencies for both electrocatalytic NH and urea synthesis, which is the bottleneck restricting their industrial applications. Herein, a new mechanism to overcome the inert of the nitrogen molecule was proposed by elongating N≡N instead of breaking N≡N to realize one-step C-N coupling in the process for urea production. We constructed a Zn-Mn diatomic catalyst with axial chloride coordination, Zn-Mn sites display high tolerance to CO poisoning and the Faradaic efficiency can even be increased to 63.5 %, which is the highest value that has ever been reported. More importantly, negligible N≡N bond breakage effectively avoids the generation of ammonia as intermediates, therefore, the N-selectivity in the co-electrocatalytic system reaches100 % for urea synthesis. The previous cognition that electrocatalysts for urea synthesis must possess ammonia synthesis activity has been broken. Isotope-labelled measurements and Operando synchrotron-radiation Fourier transform infrared spectroscopy validate that activation of N-N triple bond and nitrogen fixation activity arise from the one-step C-N coupling process of CO species with adsorbed N molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202305447 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!