Introduction: In the current study, we investigate whether oral administration of agmatine (AGM) could effectively reduce motor and cognitive deficits induced by bile duct ligation (BDL) in an animal model of hepatic encephalopathy (HE) through neuroprotective mechanisms.

Methods: The Wistar rats were divided into four groups: sham, BDL, BDL+ 40 mg/kg AGM, and BDL+ 80 mg/kg AGM. The BDL rats were treated with AGM from 2 weeks after the surgery for 4 consecutive weeks. The open field, rotarod, and wire grip tests were used to assess motor function and muscle strength. The novel object recognition test (NOR) was performed to evaluate learning and memory. Finally, blood samples were collected for the analysis of the liver markers, the animals were sacrificed, and brain tissues were removed; the CA1 regions of the hippocampus and cerebellum were processed to identify apoptosis and neuronal damage rate using caspase-3 immunocytochemistry and Nissl staining.

Results: The serological assay results showed that BDL severely impaired the function of the liver. Based on histochemical findings, BDL increased the neuronal damage in CA1 and Purkinje cells, whereas apoptosis was significantly observed only in the cerebellum. AGM treatment prevented the increase of serum liver enzymes, balance deficits, and neuronal damage in the brain areas. Apoptosis partially decreased by AGM, and there were no differences in the performance of animals in different groups in the NOR.

Conclusions: The study suggests AGM as a potential treatment candidate for HE because of its neuroprotective properties and/or its direct effects on liver function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498069PMC
http://dx.doi.org/10.1002/brb3.3124DOI Listing

Publication Analysis

Top Keywords

neuronal damage
16
liver function
8
hepatic encephalopathy
8
induced bile
8
bile duct
8
duct ligation
8
agm
7
liver
5
bdl
5
agmatine improves
4

Similar Publications

Electroacupuncture attenuates ferroptosis by promoting Nrf2 nuclear translocation and activating Nrf2/SLC7A11/GPX4 pathway in ischemic stroke.

Chin Med

January 2025

Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China.

Objective: Electroacupuncture has been shown to play a neuroprotective role following ischemic stroke, but the underlying mechanism remains poorly understood. Ferroptosis has been shown to play a key role in the injury process. In the present study, we wanted to explore whether electroacupuncture could inhibit ferroptosis by promoting nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation.

View Article and Find Full Text PDF

Octadecaneuropeptide promotes the migration of astrocyte via ODN metabotropic receptor and calcium signaling pathway.

Peptides

January 2025

University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation. 2092 Tunis, Tunisia.

Migration is an essential characteristic of cells that occurs during many physiological and pathological processes. Astrocytes represent the most abundant cell type in the adult central nervous system (CNS), that play a crucial role in various functions such as guiding and supporting neuronal migration during development and maintaining brain homeostasis at adulthood. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN).

View Article and Find Full Text PDF

The ability to control the growth and orientation of neurites over long distances has significant implications for regenerative therapies and the development of physiologically relevant brain tissue models. In this study, the forces generated on magnetic nanoparticles internalised within intracellular endosomes are used to direct the orientation of neuronal outgrowth in cell cultures. Following differentiation, neurite orientation was observed after 3 days application of magnetic forces to human neuroblastoma (SH-SY5Y) cells, and after 4 days application to rat cortical primary neurons.

View Article and Find Full Text PDF

Xinnaoxin capsule alleviates neuropathological changes and cognitive deficits in Alzheimer's disease mouse model induced by D-galactose and aluminum chloride via reducing neuroinflammation and protecting synaptic proteins.

J Ethnopharmacol

January 2025

Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, 300072 Tianjin, China. Electronic address:

Ethnopharmacological Relevance: Originally formulated to mitigate high-altitude sickness, Xinnaoxin capsules (XNX) are composed of three traditional Chinese medicines (Rhodiola rosea L., Lycium barbarum L. and Hippophae rhamnoides) with properties of anti-hypoxia, anti-fatigue, and anti-aging.

View Article and Find Full Text PDF

Purpose: The incidence of vascular dementia (VaD), as one of the main types of dementia in old age, has been increasing year by year, and exploring its pathogenesis and seeking practical and effective treatment methods are undoubtedly the key to solving this problem. Phosphoglycerate translocase 5 (PGAM5), as a crossroads of multiple signaling pathways, can lead to mitochondrial fission, which in turn triggers the onset and development of necroptosis, and thus PGAM5 may be a novel target for the prevention and treatment of vascular dementia.

Methods: Animal model of vascular dementia was established by Two-vessel occlusion (2-VO) method, and cellular model of vascular dementia was established by oxygen glucose deprivation (OGD) method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!