Background: Patients with haematological malignancies have impaired antibody responses to SARS-CoV-2 vaccination. We aimed to investigate whether a fourth mRNA COVID-19 vaccination improved antibody quantity and quality.
Methods: In this cohort study, conducted at 5 sites in the Netherlands, we compared antibody concentrations 28 days after 4 mRNA vaccinations (3-dose primary series plus 1 booster vaccination) in SARS-CoV-2 naive, immunocompromised patients with haematological malignancies to those obtained by age-matched, healthy individuals who had received the standard primary 2-dose mRNA vaccination schedule followed by a first booster mRNA vaccination. Prior to and 4 weeks after each vaccination, peripheral blood samples and data on demographic parameters and medical history were collected. Concentrations of antibodies that bind spike 1 (S1) and nucleocapsid (N) protein of SARS-CoV-2 were quantified in binding antibody units (BAU) per mL according to the WHO International Standard for COVID-19 serological tests. Seroconversion was defined as an S1 IgG concentration >10 BAU/mL and a previous SARS-CoV-2 infection as N IgG >14.3 BAU/mL. Antibody neutralising activity was tested using lentiviral-based pseudoviruses expressing spike protein of SARS-CoV-2 wild-type (D614G), Omicron BA.1, and Omicron BA.4/5 variants. This study is registered with EudraCT, number 2021-001072-41.
Findings: Between March 24, 2021 and May 4, 2021, 723 patients with haematological diseases were enrolled, of which 414 fulfilled the inclusion criteria for the current analysis. Although S1 IgG concentrations in patients significantly improved after the fourth dose, they remained significantly lower compared to those obtained by 58 age-matched healthy individuals after their first booster (third) vaccination. The rise in neutralising antibody concentration was most prominent in patients with a recovering B cell compartment, although potent responses were also observed in patients with persistent immunodeficiencies. 19% of patients never seroconverted, despite 4 vaccinations. Patients who received their first 2 vaccinations when they were B cell depleted and the third and fourth vaccination during B cell recovery demonstrated similar antibody induction dynamics as patients with normal B cell numbers during the first 2 vaccinations. However, the neutralising capacity of these antibodies was significantly better than that of patients with normal B cell numbers after two vaccinations.
Interpretation: A fourth mRNA COVID-19 vaccination improved S1 IgG concentrations in the majority of patients with a haematological malignancy. Vaccination during B cell depletion may pave the way for better quality of antibody responses after B cell reconstitution.
Funding: The Netherlands Organisation for Health Research and Development and Amsterdam UMC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270678 | PMC |
http://dx.doi.org/10.1016/j.eclinm.2023.102040 | DOI Listing |
Cardiol Ther
December 2024
Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA.
In addition to traditional risk factors, patients with breast cancer are at an increased risk of atrial fibrillation due to cancer itself and certain cancer therapies. Atrial fibrillation in these patients adds to their morbidity and mortality. The precise mechanisms leading to the increased atrial fibrillation in patients with breast cancer are not well understood.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
December 2024
Department of Nuclear Medicine, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, Sichuan, 610041, China.
Purpose: Extranodal natural killer/T-cell lymphoma (ENKTCL) is an hematologic malignancy with prognostic heterogeneity. We aimed to develop and validate DeepENKTCL, an interpretable deep learning prediction system for prognosis risk stratification in ENKTCL.
Methods: A total of 562 patients from four centers were divided into the training cohort, validation cohort and test cohort.
Cancer Chemother Pharmacol
December 2024
Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
Purpose: The treatment landscape for chronic myeloid leukemia (CML) has been revolutionized by the introduction of imatinib, a tyrosine kinase inhibitor, which has transformed the disease from a fatal condition into a manageable chronic illness for a substantial number of patients. Despite this, some individuals do not respond adequately to the treatment, and others may experience disease progression even with continued therapy. This study examined how CYP2C8*3 (G416A; rs11572080) and ABCG2 C421A (rs2231142) single nucleotide polymorphisms (SNPs) affect the plasma trough concentration and therapeutic response of imatinib in Egyptian CML patients.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
December 2024
Pulmonology and Thoracic Surgery Service, General Hospital of Mexico "Dr. Eduardo Liceaga", Dr. Balmis 148, Colonia Doctores, 06726, Mexico City, Mexico.
Purpose: To describe the clinical features and identify mortality risk factors in descending necrotizing mediastinitis (DNM) complicating deep neck abscesses (DNA) among patients admitted to the ICU.
Methods: A retrospective analysis was conducted on consecutive patients admitted to the ICU of a tertiary care public hospital. Data were collected from July 2017 to July 2024.
J Clin Immunol
December 2024
Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy.
Background: Activated Phosphoinositide 3-Kinase (PI3K) δ Syndrome (APDS), an inborn error of immunity due to upregulation of the PI3K pathway, leads to recurrent infections and immune dysregulation (lymphoproliferation and autoimmunity).
Methods: Clinical and genetic data of 28 APDS patients from 25 unrelated families were collected from fifteen Italian centers.
Results: Patients were genetically confirmed with APDS-1 (n = 20) or APDS-2 (n = 8), with pathogenic mutations in the PIK3CD or PIK3R1 genes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!