Decellularized vascular matrix is a natural polymeric biomaterial that comes from arteries or veins which are removed the cellular contents by physical, chemical and enzymatic means, leaving only the cytoskeletal structure and extracellular matrix to achieve cell adhesion, proliferation and differentiation and creating a suitable microenvironment for their growth. In recent years, the decellularized vascular matrix has attracted much attention in the field of tissue repair and regenerative medicine due to its remarkable cytocompatibility, biodegradability and ability to induce tissue regeneration. Firstly, this review introduces its basic properties and preparation methods; then, it focuses on the application and research of composite scaffold materials based on decellularized vascular matrix in vascular tissue engineering in terms of current in vitro and in vivo studies, and briefly outlines its applications in other tissue engineering fields; finally, it looks into the advantages and drawbacks to be overcome in the application of decellularized vascular matrix materials. In conclusion, as a new bioactive material for building engineered tissue and repairing tissue defects, decellularized vascular matrix will be widely applied in prospect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278309 | PMC |
http://dx.doi.org/10.1186/s12938-023-01120-z | DOI Listing |
Cells
December 2024
Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
Cardiovascular diseases resulting from myocardial infarction (MI) remain a leading cause of death worldwide, imposing a substantial burden on global health systems. Current MI treatments, primarily pharmacological and surgical, do not regenerate lost myocardium, leaving patients at high risk for heart failure. Engineered heart tissue (EHT) offers a promising solution for MI and related cardiac conditions by replenishing myocardial loss.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden.
Transplantation of decellularized uterus tissue showed promise in supporting regeneration following uterine injury in animal models, suggesting an alternative to complete uterus transplantation for uterine factor infertility treatment. However, most animal studies utilized small grafts, limiting their clinical relevance. Hence, we used larger grafts (20 × 10 mm), equivalent to nearly one uterine horn in rats, to better evaluate the bioengineering challenges associated with structural support, revascularization, and tissue regeneration.
View Article and Find Full Text PDFBiomater Adv
January 2025
Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China. Electronic address:
Chitosan is a promising biomaterial for tissue engineering, but its functionality is limited by a lack of bioactive sites. This study develops chitosan/amniotic membrane microcarriers to enhance vascularization and tissue regeneration for subcutaneous adipose tissue. The incorporation of decellularized amniotic membrane enhances the bioactivities of chitosan in promoting cell differentiation and angiogenesis.
View Article and Find Full Text PDFCell Stem Cell
January 2025
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA. Electronic address:
Tissue-engineered vascular conduits (TEVCs) are a promising blood vessel replacement. In a recent publication in Cell Stem Cell, Park et al. developed TEVCs comprised of decellularized human umbilical arteries lined with shear-trained, human induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs) that resisted thrombosis and exhibited patency upon grafting into the rat inferior vena cava (IVC).
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
In situ gelling, cell-laden hydrogels hold promise for regenerating tissue lesions with irregular shapes located in complex and hard-to-reach anatomical sites. A notable example is the regeneration of neural tissue lost due to cerebral cavitation. However, hypoxia-induced cell necrosis during the vascularization period imposes a significant challenge to the success of this approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!