Carbon-based single-atom catalysts (SACs) for electrochemical nitrogen reduction reaction (NRR) have received increasing attention due to their sustainable, efficient, and green advantages. However, at present, the research on carbon nanotubes (CNTs)-based NRR catalysts is very limited. In this paper, using FeN@(n, 0) CNTs (n = 3 ~ 10) as the representative catalysts, we demonstrate that the CNT curvatures will affect the spin polarization of the catalytic active centers, the activation of the adsorbed N molecules and the Gibbs free energy barriers for the formation of the critical intermediates in the NRR processes, thus changing the catalytic performance of CNT-based catalysts. Zigzag (8, 0) CNT was taken as the optimal substrate, and twenty transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Tc, Ru, Rh, Pd, W, Re, Ir, and Pt) were embedded into (8, 0) CNT via N group to construct the NRR catalysts. Their electrocatalytic performance for NRR were examined using DFT calculations, and TcN@(8, 0) CNT was screened out as the best candidate with a low onset potential of - 0.53 V via the distal mechanism, which is superior to the molecules- or graphene-support Tc catalysts. Further electronic properties analysis shows that the high NRR performance of TcN@(8, 0) CNT originates from the strong d-2π* interaction between the N molecule and Tc atom. TcN@(8, 0) CNT also exhibits higher selectivity for NRR than the competing hydrogen evolution reaction (HER) process. The present work not only provides a promising catalyst for NRR, but also open up opportunities for further exploring of low-dimensional carbon-based high efficiency electrochemical NRR catalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279692 | PMC |
http://dx.doi.org/10.1038/s41598-023-36945-0 | DOI Listing |
J Phys Chem Lett
January 2025
Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China.
Understanding the mechanism of the nitrogen reduction reaction (NRR) is essential for designing highly efficient catalysts. In this study, we investigated the effects of the metal-support interaction (MSI) on NRR using density functional theory. The simulations revealed that the MSI is weak in the Au/BiOCl system, with charge accumulation and depletion primarily occurring within the Au cluster.
View Article and Find Full Text PDFNanoscale
January 2025
Institute of Photochemistry and Photofunctional Materials, University of Shanghai for Science and Technology, Shanghai 200093, China.
The electrochemical nitrogen reduction reaction (NRR) has been regarded as a green and promising alternative to the traditional Haber-Bosch process. However, the high bond energy (940.95 kJ mol) of the NN triple bond hinders the adsorption and activation of N molecules, which is a critical factor restricting the catalytic performance of catalysts and their large-scale applications.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
Carbon catalysts have shown promise as an alternative to the currently available energy-intensive approaches for nitrogen fixation (NF) to urea, NH, or related nitrogenous compounds. The primary challenges for NF are the natural inertia of nitrogenous molecules and the competitive hydrogen evolution reaction (HER). Recently, carbon-based materials have made significant progress due to their tunable electronic structure and ease of defect formation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.
Artificial N fixation via the electrocatalytic nitrogen (N) reduction reaction (NRR) has been recently promoted as a rational route toward reducing energy consumption and CO emission as compared with the traditional Haber-Bosch process. Nevertheless, optimizing NRR relies on developing highly efficient electrocatalysts. Herein, we report on the reliable and reproducible synthesis of two promising electrocatalysts in either the presence or absence of Ketjenblack (KB), namely, ZrO-ZrN@KB and ZrO-ZrN systems, synthesized through the nitriding of Zr.
View Article and Find Full Text PDFACS Omega
December 2024
China Astronaut Research and Training Center, Beijing 100094, China.
The development of catalysts with high activity and selectivity for the electrochemical nitrogen reduction reaction (NRR) remains crucial. Molybdenum carbide (MoC) shows promise as an electrocatalyst for NRR but faces challenges due to the difficulty of N adsorption and activation as well as the competitive hydrogen evolution reaction. In this study, we propose a strategy of combining TiO with MoC to form heterostructure catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!