Atherosclerosis-associated endothelial dysfunction is promoted by miR-199a-5p/SIRT1 axis regulated by circHIF1ɑ.

Nutr Metab Cardiovasc Dis

Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, China; Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China; School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China. Electronic address:

Published: August 2023

Background And Aims: Atherosclerosis (AS) is a chronic inflammatory disease that damages the arterial wall as a result of hyperlipidemia and causes endothelial cell dysfunction, which increases the risk of atherothrombotic events. Multiple pathological conditions have shown ectopic miR-199a-5p levels to cause endothelial injury, but its role in the AS competitive endogenous RNA (CeRNA) network is still unknown.

Methods And Results: The high-fat diet (HFD) apoE-/- mouse model was constructed in vivo, and ECs were cultured under ox-LDL treatment to induce EC injury in vitro. Immunohistochemistry and immunofluorescence staining were used to assess the effect of miR-199a-5p on the macrophage, SMC, collagen content, and endothelial coverage in the artery wall of mouse model. miR-199a-5p level was validated to be overexpression in the aorta tissue of HFD apoE-/- mice and in the ox-LDL-treated ECs, and even in the plasma EVs of the patients with cerebral AS. Silencing of miR-199a-5p significantly attenuated atherosclerotic progress in HFD apoE-/- mice, and the gain/loss-of-function assay indicated that miR-199a-5p overexpression aggravated ox-LDL-induced disabilities of endothelial proliferation, motility, and neovascularization based on cell counting kit-8 assay, transwell assay and matrigel assay. Mechanistically, miR-199a-5p prevented EC activation by activating the FOXO signaling pathway by targeting SIRT1. Additionally, circular RNA (circRNA) circHIF1ɑ was identified as having a low expression in the ox-LDL-treated EC and mediated SIRT1 expression via sponging miR-199a-5p to rescue ox-LDL-induced EC injury.

Conclusions: Our study demonstrated the vital role of miR-199a-5p/SIRT1 axis regulated by circHIF1ɑ in AS pathogenesis and provided novel effective targets for AS treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.numecd.2023.05.007DOI Listing

Publication Analysis

Top Keywords

hfd apoe-/-
12
mir-199a-5p/sirt1 axis
8
axis regulated
8
regulated circhif1ɑ
8
mouse model
8
apoe-/- mice
8
mir-199a-5p
7
atherosclerosis-associated endothelial
4
endothelial dysfunction
4
dysfunction promoted
4

Similar Publications

Background: Qingre Huoxue Decoction (QRHX) is a classical Chinese herbal prescription widely used in clinical practice for the treatment of atherosclerosis (AS). Our previous study demonstrated its efficacy in stabilizing plaque and improving prognosis, as well as its ability to regulate macrophage polarization. This study aimed to further investigate the effects of QRHX on AS and explore the underlying mechanisms.

View Article and Find Full Text PDF

The study was designed to investigate the impact of N6-methyladenosine (m6A) writer Wilms tumor 1-associated protein (WTAP) on the progression of atherosclerosis (AS) and to further elucidate its possible regulatory mechanism. The m6A levels and WTAP expressions were initially assessed through RIP, qRT-PCR, and western blotting. An in vitro model of AS was constructed by ox-LDL treatment in RAW264.

View Article and Find Full Text PDF

HFD aggravated the arthritis and atherosclerosis by altering the intestinal status and gut microbiota.

Mol Med

December 2024

Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, School of Medicine, Jinan University, Guangzhou, 510632, China.

Rheumatoid arthritis (RA) and cardiovascular disease (CVD) are both the chronic inflammatory disease. To investigate the influence of secondary atherosclerosis on arthritis mice, we treated the ApoE mice with K/BxN serum and high fat diet (HFD), and subsequently assessed the phenotypes as well as immune profiles of K/BxN serum and HFD induced ApoE mice. We found that HFD treatment aggravated the hyperlipidemia, atherosclerotic lesions, ankle swelling and arthropathy of mice.

View Article and Find Full Text PDF

Emodin Suppresses NLRP3/GSDMD-induced Inflammation via the TLR4/MyD88/NF-κB Signaling Pathway in Atherosclerosis.

Cardiovasc Drugs Ther

December 2024

Department of Cardiology, Panvascular Disease Management Center (PDMC), Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, WenZhou, ZheJiang, China.

Purpose: Inflammatory responses induced by NLRP3 inflammasome contribute to the progression of atherosclerosis. This study seeks to investigate the effect of emodin on the NLRP3 inflammasome in atherogenesis and to probe the underlying mechanism.

Methods: ApoE-knockout (ApoE) mice were treated with a high-fat diet (HFD) for 12 weeks and intragastrically with emodin for 6 weeks.

View Article and Find Full Text PDF

FSCN1 is a Potential Therapeutic Target for Atherosclerosis Revealed by Single-Cell and Bulk RNA Sequencing.

J Inflamm Res

November 2024

Department of Cardiology, Affiliated Hospital of Jiangsu University, Institute Cardiovascular Disease of Jiangsu University, Zhenjiang, 212001, People's Republic of China.

Background: Atherosclerosis (AS) is the major cause of cardiovascular disease. Using integrated single-cell and bulk RNA sequencing data of atherosclerosis, we aimed to investigate the cell phenotype, intercellular communication, and potential therapeutic target in AS.

Methods: Single-cell sequencing data from aortic arch of Apoe mice in normal diet (ND) and high fat diet (HFD) groups (obtained from GSE206239) were analyzed by Seurat, singleR, ReactomeGSA, and cellchat package.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!