A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The utility of using Volunteered Geographic Information (VGI) for evaluating pluvial flood models. | LitMetric

The utility of using Volunteered Geographic Information (VGI) for evaluating pluvial flood models.

Sci Total Environ

German Research Centre for Geosciences GFZ, Section Hydrology, Potsdam D-14473, Germany; Leichtweiss Institute for Hydraulic Engineering and Water Resources, Division of Hydrology and River Basin Management, Technische Universität Braunschweig, Braunschweig D-38106, Germany.

Published: October 2023

Pluvial floods are increasingly threatening urban environments worldwide due to human-induced climate change. High-resolution, state-of-the-art pluvial flood models are urgently needed to inform climate change adaptation and disaster risk reduction measures but are generally not empirically tested because of the rarity of local high-intensity precipitation events and the lack of monitoring capabilities. Volunteered Geographic Information (VGI) collected by professionals, non-professionals and citizens and made available on the internet can be used to monitor the dynamic extent of a pluvial flood during and after an extreme rain event but is sometimes considered to be unreliable. In this paper, we explore the general utility of VGI to evaluate the performance of pluvial flood models and gain new insights to improve these models. As background for our research, we use the capital city of Budapest, which recently suffered three heavy rainfall events in just five years (2015, 2017 and 2020). For each pluvial flood event, we collected photographic evidence from different online media sources and estimated the associated water depths at various locations in the city from the image context. These were compared with the results of a 2D pluvial flood model that has been shown to provide comparable results to other state-of-the-art inundation models and is easily transferred to other urban areas due to its reliance on open data sources. We introduce a general methodology for comparing VGI with model data by probing different spatial resolutions. Our findings highlight untapped potential and fundamental challenges in using VGI for model evaluation. It is proposed that VGI may become an essential tool and improve the confidence in model-based risk assessments for climate change adaptation and disaster risk reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.164962DOI Listing

Publication Analysis

Top Keywords

pluvial flood
24
flood models
12
climate change
12
volunteered geographic
8
geographic vgi
8
change adaptation
8
adaptation disaster
8
disaster risk
8
risk reduction
8
vgi model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!