L-serine generated in astrocytes plays a pivotal role in modulating essential neurometabolic processes, while its enantiomer, D-serine, specifically regulates NMDA receptor (NMDAR) signalling. Despite their physiological relevance in modulating cerebral activity, serine enantiomers metabolism in Parkinson's disease (PD) remains elusive. Using High-Performance Liquid Chromatography (HPLC), we measured D- and L-serine levels along with other amino acids known to modulate NMDAR function, such as L-glutamate, L-aspartate, D-aspartate, and glycine, in the post-mortem caudate putamen (CPu) and superior frontal gyrus (SFG) of PD patients. Moreover, we examined these amino acids in the cerebrospinal fluid (CSF) of de novo living PD, Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS) patients versus subjects with other neurological disorders (OND), used as control. We found higher D-serine and L-serine levels in the CPu of PD patients but not in the SFG, a cerebral region that, in contrast to the CPu, is not innervated by nigral dopaminergic terminals. We also highlighted a significant elevation of both serine enantiomers in the CSF samples from PD but not in those of AD and ALS patients, compared with control subjects. By contrast, none or only minor changes were found in the amount of other NMDAR modulating amino acids. Our findings identify D-serine and L-serine level upregulation as a biochemical signature associated with nigrostriatal dopaminergic degeneration in PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2023.106203 | DOI Listing |
Biomater Sci
December 2024
Department of Chemistry, COMSATS University, Abbottabad Campus, KPK, Pakistan 22060.
Chiral recognition holds tremendous significance in both life science and chemistry. The ability to differentiate between enantiomers is crucial because one enantiomer typically holds greater biological relevance while its counterpart is often not only unnecessary but also potentially harmful. In this regard, homochiral metallacycle [ZnClL] is used in this study to understand and differentiate between the and enantiomers of amino acids (alanine, proline, serine, and valine).
View Article and Find Full Text PDFNephrol Dial Transplant
November 2024
Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
Bioorg Med Chem Lett
November 2024
Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary.
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) has a crucial role in cell death and inflammation. A promising approach to develop novel inhibitors of RIPK1 mediated necroptosis is to mix the different binding modes of the known RIPK1 inhibitors into one molecule. Herein we report the synthesis and biological evaluation of novel mixed type inhibitors.
View Article and Find Full Text PDFMolecules
August 2024
Federal State Budgetary Scientific Institution, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Science, 28 Vavilov St., 119991 Moscow, Russia.
The interaction between natural amino acids and hydrogen peroxide is of paramount importance due to the widespread use of hydrogen peroxide in biological and environmentally significant processes. Given that both amino acids and hydrogen peroxide occur in nature in two enantiomeric forms, it is crucial to investigate the formation of complexes between them, considering the role of molecular chirality. In this work, we report a theoretical study on the hydrogen peroxide enantiomers and their interactions with L- and S-serine and their clusters.
View Article and Find Full Text PDFFood Chem Toxicol
October 2024
Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China. Electronic address:
In recent decades, the toxicity of chiral pesticides to non-target organisms has attracted increasing attention. Cellular metabolic disorders are essential sensitive molecular initiating event for toxicological effects. BF is a typical chiral pesticide, and the liver is the main organ for BF accumulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!