Breast-conserving surgery (BCS) is the primary strategy for treating early-stage breast cancer; however, the incidence of local recurrence and breast tissue loss negatively impacts patients and survivors. Furthermore, radiotherapy and/or systemic therapies are frequently advised to avoid recidivism and increase the patient's chance of survival, resulting in longer duration of treatments, and unpleasant systemic side effects. Given the poor prognosis and the heterogeneity between individuals and tumors, a patient-centered approach is fundamental. Herein we developed a multipurpose 4D printed implant made of a blend of carboxymethyl cellulose sodium salt (CMC) and cellulose nanocrystals (CNC), loaded with doxorubicin (DOX). To predict printability performance, full rheological characterization was carried out. The smart device was programmed to change size, under swelling, to better fit in the tissue cavity, resulting in a great potential for personalization, thus improving the aesthetic outcomes. The influence of the formulation and printing parameters on the morpho transformation was investigated through the swelling test, confirming the possibility to program the 4D shape. The manufactured implants were characterized by a variety of methods, including in vitro release studies. Lastly, the anticancer activity was conducted in vitro, on MDA-MB-231 cells. Implants promoted an anticancer effect of -58% viability after 72 h incubation, even when tested 4 weeks after the printing process. Overall, the morpho transformation and the in vitro studies have shown that the implant could represent a potential strategy for breast cancer following resection, to fill the void in the breast resulting from the surgery and provide an anticancer effect to avoid recurrence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2023.123154 | DOI Listing |
Front Med (Lausanne)
January 2025
Department of General Surgery, The People's Hospital of Fenghua Ningbo, Ningbo, China.
Background: Breast cancer (BC) is the most common cancer in women in the U.S. and a leading cause of cancer-related deaths.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Introduction: Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer to treat. While previous studies have demonstrated that ginsenoside Rh2 induces apoptosis in TNBC cells, the specific molecular targets and underlying mechanisms remain poorly understood. This study aims to uncover the molecular mechanisms through which ginsenoside Rh2 regulates apoptosis and proliferation in TNBC, offering new insights into its therapeutic potential.
View Article and Find Full Text PDFBreast J
January 2025
Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.
Collagen type XI alpha 1 (COL11A1), a critical member of the collagen superfamily, is essential for tissue structure and integrity. This study aimed to validate previously identified variations in COL11A1 expression during breast cancer carcinogenesis and progression, as well as elucidate their clinical implications. COL11A1 mRNA expression levels were assessed using real-time reverse transcription-PCR (RT-PCR) in 30 pairs of normal breast tissue and primary breast cancer, 30 pairs of primary breast cancer and lymph node metastases, 30 benign tumors, and 107 primary breast cancers.
View Article and Find Full Text PDFOpen Life Sci
December 2024
Department of Pathology, Hangzhou Women's Hospital, 369 Kunpeng Road, Shangcheng District, Hangzhou, 310008, Zhejiang, China.
Breast cancer is a common malignant tumor of women. Ki67 is an important biomarker of cell proliferation. With the quantitative analysis, it is an important indicator of malignancy for breast cancer diagnosis.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China.
Increasing evidence has shown that physical exercise remarkably inhibits oncogenesis and progression of numerous cancers and exercise-responsive microRNAs (miRNAs) exert a marked role in exercise-mediated tumor suppression. In this research, expression and prognostic values of exercise-responsive miRNAs were examined in breast cancer (BRCA) and further pan-cancer types. In addition, multiple independent public and in-house cohorts, in vitro assays involving multiple, macrophages, fibroblasts, and tumor cells, and in vivo models were utilized to uncover the tumor-suppressive roles of miR-29a-3p in cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!