Comprehensive sulfur-nitrosylation (SNO) proteome coverage in complex biological systems remains challenging as a result of the low level of endogenous S-nitrosylation and its chemical instability. Herein, we optimized the synthesis route of SNOTRAP (SNO trapping by triaryl phosphine) probe and the proteomics pipeline (including preventing over-alkylation, sample washing, trypsin digestion). Preventing overalkylation was found to be the key factor resulting in a higher number of identified SNO proteins by evaluating various experimental conditions. With the improved SNOTRAP-based proteomic pipeline, we achieved an improvement of ∼10-fold on identification efficiency, and identified 1181 SNO proteins (1714 SNO sites) in mouse brain, representing the largest repository of endogenous S-nitrosylation. Moreover, we identified the consensus motif of SNO sites, suggesting the correlation with local hydrophobicity, acid-base catalysis, and the surrounding secondary structures for modification of specific cysteines by NO. Collectively, we provide a universal pipeline for the high-coverage identification of low-abundance SNO proteins with high enrichment efficiency, high specificity (98%), good reproducibility, and easy implementation, contributing to the elucidation of the mechanism(s) of nitrosative stress in multiple diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2023.464162DOI Listing

Publication Analysis

Top Keywords

sno proteins
12
endogenous s-nitrosylation
8
sno sites
8
sno
7
improved sulfur-nitroso-proteome
4
sulfur-nitroso-proteome strategy
4
strategy global
4
global profiling
4
profiling sulfur-nitrosylated
4
proteins
4

Similar Publications

Glycolate oxidase (GOX) is a crucial enzyme of photorespiration involving carbon metabolism and stress responses. It is poorly understood, however, how its activities are modulated in response to oxidative stress elicited by various environmental cues. Analysis of Arabidopsis catalase-defective mutant cat2 revealed that the GOX activities were gradually repressed during the growth, which were accompanied by decreased salicylic acid (SA)-dependent cell death, suggesting photorespiratory HO may entrain negative feedback regulation of GOX in an age-dependent manner.

View Article and Find Full Text PDF

Low-input redoxomics facilitates global identification of metabolic regulators of oxidative stress in the gut.

Signal Transduct Target Ther

January 2025

National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.

Oxidative stress plays a crucial role in organ aging and related diseases, yet the endogenous regulators involved remain largely unknown. This work highlights the importance of metabolic homeostasis in protecting against oxidative stress in the large intestine. By developing a low-input and user-friendly pipeline for the simultaneous profiling of five distinct cysteine (Cys) states, including free SH, total Cys oxidation (Sto), sulfenic acid (SOH), S-nitrosylation (SNO), and S-glutathionylation (SSG), we shed light on Cys redox modification stoichiometries and signaling with regional resolution in the aging gut of monkeys.

View Article and Find Full Text PDF

The plant hormone ethylene elicits crucial regulatory effects on plant growth, development, and stress resistance. As the enzyme that catalyzes the final step of ethylene biosynthesis, 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO) plays a key role in precisely controlling ethylene production. However, the functional characterization of the gene family in rice remains largely unexplored.

View Article and Find Full Text PDF

Aims: Stroke is a major public health concern leading to high rates of death and disability worldwide, unfortunately with no effective treatment available for stroke recovery during the repair phase.

Methods: Photothrombotic stroke was induced in mice. Adeno-associated viruses (AAV) were microinjected into the peri-infarct cortex immediately after photothrombotic stroke.

View Article and Find Full Text PDF

Modeling predicts facile release of nitrite but not nitric oxide from the thionitrate CHSNO with relevance to nitroglycerin bioactivation.

Sci Rep

December 2024

Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke Street West, Montréal, QC, H4B 1R6, Canada.

Nitroglycerin is a potent vasodilator in clinical use since the late 1800s. It functions as a prodrug that is bioactivated by formation of an enzyme-based thionitrate, E-Cys-NO. This intermediate reportedly decomposes to release NO and NO but their relative yields remain controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!