Salt stress is becoming a serious problem for the global environment and agricultural sector. Different sources of iron (Fe) can provide an eco-friendly solution to remediate salt-affected soils. The Fe nanoparticles (FeNPs) and conventional sources of Fe (iron-ethylene diamine tetra acetic acid; Fe-EDTA; and iron sulfate; FeSO) were used to evaluate their effects on wheat crop grown in normal and salt-affected soils. Application of FeNPs (25 mg/kg) on normal soil increased the dry weights of wheat roots, shoots, and grains by 46%, 59%, and 77%, respectively. In salt-affected soil, FeNPs increased the dry weights of wheat roots, shoots, and grains by 65%, 78%, and 61%, respectively. The application of FeSO and Fe-EDTA increased the growth parameters of wheat in both normal and salt-affected soils compared to the respective controls. The photosynthetic parameters, including chlorophyll a (50%), chlorophyll b (67%), carotenoids (62%), and total chlorophyll contents (50%), were increased with the application of FeNPs under salt stress. The FeNPs increased plant-essential nutrients like iron, zinc, calcium, magnesium, and potassium in both normal and salt-affected soils. The experiment revealed that the application of Fe plays a significant role in enhancing the growth of wheat on alkaline normal and salt-affected soils. Maximum growth response was recorded with FeNPs than other Fe sources. The future must be focused on long term field experiments to economize the application of FeNPs on a large scale for commercialization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.131861 | DOI Listing |
J Environ Manage
January 2025
State Key Laboratory of Soil Erosion and Dryland Agriculture on the Loess Plateau, Northwest A&F University, Yangling, 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, 712100, China. Electronic address:
Nitrogen (N) fixing legumes typically enhance the ability of coexisting non-N-fixing species to resist disease and drought, but whether legumes enhance their ability to resist salt stress remains unknown, restricting our ability to explore the potential of legumes to rehabilitate salt-affected ecosystems. We conducted a simulation experiment to examine whether and how legumes influence the response of coexisting grass to salt stress. We compared the effects of salt stress on the plant biomass, root cell viability, antioxidant enzyme activities, soil extracellular enzyme activities and microbial functional gene abundances associated with N and phosphorus (P) cycling between pure grass communities and legume-grass mixtures.
View Article and Find Full Text PDFFront Microbiol
January 2025
National Bureau of Agriculturally Important Microorganism, Mau, India.
Non-halophytic plants are highly susceptible to salt stress, but numerous studies have shown that halo-tolerant microorganisms can alleviate this stress by producing phytohormones and enhancing nutrient availability. This study aimed to identify and evaluate native microbial communities from salt-affected regions to boost black gram () resilience against salinity, while improving plant growth, nitrogen uptake, and nodulation in saline environments. Six soil samples were collected from a salt-affected region in eastern Uttar Pradesh, revealing high electrical conductivity (EC) and pH, along with low nutrient availability.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary.
Soil contamination with cadmium (Cd) and salinity poses a significant challenge, affecting crop health and productivity. This study explores the combined application of sugarcane bagasse (SCB) and zinc oxide nanoparticles (ZnO NPs) to mitigate the toxic effects of Cd and salinity in wheat plants. Field experiments conducted in Cd-contaminated saline soils revealed that the application of SCB (0, 5, and 10 t ha) and ZnO NPs (0, 12.
View Article and Find Full Text PDFPlant Commun
January 2025
Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea. Electronic address:
Roots absorb water and nutrients from the soil, support the plant's aboveground organs, and detect environmental changes, making them crucial targets for improving crop productivity. Roots are particularly sensitive to soil salinity, a major abiotic stress that poses a serious threat to global agriculture. In response to salt stress, plants suppress root meristem size, thus reducing root growth; however, the mechanisms underlying this growth restriction remain unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
Salinity stress disrupts water uptake and nutrient absorption, causing reduced photosynthesis, stunted growth, and decreased crop yields in plants. The use of indole acetic acid (IAA), arginine (AN), and mango fruit waste biochar (MFWB) can be effective methods to overcome this problem. Indole acetic acid (IAA) is a natural auxin hormone that aids cell elongation and division, thereby increasing plant height and branching.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!