The objective was to explore the pharmacological mechanism of modified shengmaiyin (MSMY) in the treatment of acute lymphoblastic leukemia (ALL) by network pharmacology analysis. The effective components and predicted targets of MSMY were collected from TCMSP and Swiss target prediction databases, and the related targets of ALL were screened by GeneCards and DisGeNET. The core targets and related signaling pathways of MSMY active ingredients for the treatment of ALL were predicted by protein-protein interaction network (PPI), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis. We identified 172 potential targets for the active components of MSMY, 538 disease targets associated with ALL, and 59 common gene targets. PPI network showed that 27 targets such as triptolide, RAC-alpha serine/threonine-protein kinase (AKT1), vascular endothelial growth factor A and Caspase-3 (CASP3) were the core targets. KEGG enrichment analysis related signaling pathways included cancer pathway, phosphatidylinositol 3 kinase, PI-3K/protein kinase B (PI3K-Akt) signaling pathway, apoptosis and mitogen-activated protein kinase (MAPK) signaling pathway and IL-17 signaling pathway. The effective active components and potential therapeutic targets of MSMY in the treatment of ALL were initially identified by comprehensive network pharmacology, which provides a theoretical basis for further study of the material basis and molecular mechanism of MSMY in the treatment of ALL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256333 | PMC |
http://dx.doi.org/10.1097/MD.0000000000034013 | DOI Listing |
The objective was to explore the pharmacological mechanism of modified shengmaiyin (MSMY) in the treatment of acute lymphoblastic leukemia (ALL) by network pharmacology analysis. The effective components and predicted targets of MSMY were collected from TCMSP and Swiss target prediction databases, and the related targets of ALL were screened by GeneCards and DisGeNET. The core targets and related signaling pathways of MSMY active ingredients for the treatment of ALL were predicted by protein-protein interaction network (PPI), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis.
View Article and Find Full Text PDFMicroorganisms
May 2022
Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
Azo dyes impact the environment and deserve attention due to their widespread use in textile and tanning industries and challenging degradation. The high temperature, pH, and salinity used in these industries render industrial effluent decolorization and detoxification a challenging process. An enrichment technique was employed to screen for cost-effective biodegraders of Direct Red 81 (DR81) as a model for diazo dye recalcitrant to degradation.
View Article and Find Full Text PDFPhytomedicine
January 2018
Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China. Electronic address:
Background: Sheng Mai Yin (SMY), a well-known Chinese herbal medicine, is widely used to treat cardiac diseases characterized by the deficiency of Qi and Yin syndrome in China. SMY-based treatment has been derived from Traditional Chinese Medicine (TCM), officially recorded in the Chinese Pharmacopoeia.
Purpose: We aimed to clarify whether SMY attenuates myocardial injury induced by adriamycin in Wistar rats with chronic heart failure (CHF).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!