Treatment of head and neck squamous cell carcinoma (HNSCC) is a substantial clinical challenge due to the high local recurrence rate and chemotherapeutic resistance. This project seeks to identify new potential biomarkers of prognosis prediction and precision medicine to improve this condition. A synthetic data matrix for RNA transcriptome datasets and relevant clinical information on HNSCC and normal tissues was downloaded from the Genotypic Tissue Expression Project and The Cancer Genome Atlas (TCGA). The necrosis-associated long-chain noncoding RNAs (lncRNAs) were identified by Pearson correlation analysis. Then 8-necrotic-lncRNA models in the training, testing and entire sets were established through univariate Cox (uni-Cox) regression and Lasso-Cox regression. Finally, the prognostic ability of the 8-necrotic-lncRNA model was evaluated via survival analysis, nomogram, Cox regression, clinicopathological correlation analysis, and receiver operating characteristic (ROC) curve. Gene enrichment analysis, principal component analysis, immune analysis and prediction of risk group semi-maximum inhibitory concentration (IC50) were also conducted. Correlations between characteristic risk score and immune cell infiltration, immune checkpoint molecules, somatic gene mutations, and anti-cancer drug sensitivity were analyzed. Eight necrosis-associated lncRNAs (AC099850.3, AC243829.2, AL139095.4, SAP30L-AS1, C5orf66-AS1, LIN02084, LIN00996, MIR4435-2HG) were developed to improve the prognosis prediction of HNSCC patients. The risk score distribution, survival status, survival time, and relevant expression standards of these lncRNAs were compared between low- and high-risk groups in the training, testing and entire sets. Kaplan-Meier analysis showed the low-risk patients had significantly better prognosis. The ROC curves revealed the model had an acceptable predictive value in the TCGA training and testing sets. Cox regression and stratified survival analysis indicated that the 8 necrosis-associated lncRNAs were risk factors independent of various clinical parameters. We recombined the patients into 2 clusters through Consensus ClusterPlus R package according to the expressions of necrotic lncRNAs. Significant differences were found in immune cell infiltration, immune checkpoint molecules, and IC50 between clusters, suggesting these characteristics can be used to evaluate the clinical efficacy of chemotherapy and immunotherapy. This risk model may serve as a prognostic signature and provide clues for individualized immunotherapy for HNSCC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256380 | PMC |
http://dx.doi.org/10.1097/MD.0000000000033994 | DOI Listing |
J Surg Educ
January 2025
Washington University of St. Louis, Department of Orthopaedic Surgery, St. Louis, Missouri.
Objective: Orthopedic residents are tasked with rapidly acquiring clinical and surgical skills, especially during their PGY-1 year. However, resource constraints and other factors frequently cause skills training to fall short of established guidelines. We aimed to design and evaluate a cross-institutional, month-long curriculum aimed at pooling resources to optimize training.
View Article and Find Full Text PDFOtol Neurotol
February 2025
Department of Otolaryngology-Head and Neck Surgery.
Objective: To compare fall risk scores of hearing aids embedded with inertial measurement units (IMU-HAs) and powered by artificial intelligence (AI) algorithms with scores by trained observers.
Study Design: Prospective, double-blinded, observational study of fall risk scores between trained observers and those of IMU-HAs.
Setting: Tertiary referral center.
PLOS Glob Public Health
January 2025
Britain Nepal Medical Trust, United Kingdom of Great Britain and Northern Ireland (UK), London, United Kingdom.
Cervical cancer is the leading cancer among women in Nepal, but the country has very low screening rate, with only 8.2% of women being screened. In recent years, a self-sampling kit for testing for the human papillomavirus (HPV) has been developed to allow self-sampling and enable early detection of cervical abnormalities.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Department of Radiology, Ålesund Hospital, Møre og Romsdal Hospital Trust, Ålesund, Norway.
Background: Deep learning-based segmentation of brain metastases relies on large amounts of fully annotated data by domain experts. Semi-supervised learning offers potential efficient methods to improve model performance without excessive annotation burden.
Purpose: This work tests the viability of semi-supervision for brain metastases segmentation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!