Isotopic enrichment in lanthanide coordination complexes: contribution to single-molecule magnets and spin qudit insights.

Chem Commun (Camb)

Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, 35000 Rennes, France.

Published: July 2023

Lanthanide Single-Molecule Magnets (SMMs) fascinate the scientific community due to their plethora of potential applications ranging from data storage to spintronic devices and quantum computing. This review article proposes a comprehensive description of the influence of the nuclear spin, hyperfine interaction, on the magnetic properties of lanthanide SMMs and on quantum information processing of qudit. This influence is analysed for non-Kramers and Kramers lanthanide SMMs as well as for the electronic distribution of the electron in 4f orbitals oblate and prolate ions. Then the role of magnetic interactions in isotopically enriched polynuclear Dy(III) SMMs is discussed. Finally the possible effect of superhyperfine interaction due to the nuclear spin of elements originating from the surrounding of the lanthanide centre is analyzed. The effect of nuclear spin on the dynamics of the lanthanide SMMs is demonstrated using different techniques such as magnetometry, muon spectroscopy (μ-SR), and Mössbauer and Resonance Vibrational Spectroscopies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324460PMC
http://dx.doi.org/10.1039/d3cc01722bDOI Listing

Publication Analysis

Top Keywords

nuclear spin
12
lanthanide smms
12
single-molecule magnets
8
lanthanide
6
smms
5
isotopic enrichment
4
enrichment lanthanide
4
lanthanide coordination
4
coordination complexes
4
complexes contribution
4

Similar Publications

Using NMR Spectroscopy to Evaluate Metal-Ligand Bond Covalency for the f Elements.

Acc Chem Res

January 2025

Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.

ConspectusUnderstanding f element-ligand covalency is at the center of efforts to design new separations schemes for spent nuclear fuel, and is therefore of signficant fundamental and practical importance. Considerable effort has been invested into quantifying covalency in f element-ligand bonding. Over the past decade, numerous studies have employed a variety of techniques to study covalency, including XANES, EPR, and optical spectroscopies, as well as X-ray crystallography.

View Article and Find Full Text PDF

In ordered magnets, the elementary excitations are spin waves (magnons), which obey Bose-Einstein statistics. Similarly to Cooper pairs in superconductors, magnons can be paired into bound states under attractive interactions. The Zeeman coupling to a magnetic field is able to tune the particle density through a quantum critical point, beyond which a 'hidden order' is predicted to exist.

View Article and Find Full Text PDF

Significant photoinduced voltages observed in permalloy structures consist of two contributions with different origins, which depend on illumination conditions, structure geometry and magnetic field in distinct ways. The first component is the plasmon drag effect voltage closely associated with plasmon propagation. The second contribution is magnetically dependent and can be related to photoinduced gradients in the sample temperature and spin polarization.

View Article and Find Full Text PDF

Relax: Analytic and automatic NMR relaxation theory.

J Magn Reson

January 2025

NMR Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Finland. Electronic address:

Spin relaxation is modelled using the so-called relaxation superoperator Γˆˆ. Analytic forms of Γˆˆ have been derived in the literature in the simplest cases of one- or two-spin systems, with S=12 nuclei and no more than two different simultaneous relaxation mechanisms involved. Beyond that, for systems of more than two spins, with S>12 and/or multiple relaxation mechanisms at play, the derivations become notoriously complicated, which is why analytic relaxation theory has mostly been considered a dead end.

View Article and Find Full Text PDF

Purpose: Silent brain infarcts, sometimes appearing as incidental lacunes in patients with unknown history of vascular event, are linked to dementia, gait disturbances and depression. We observed that some cavitating lacunes were only visible on b0-diffusion-weighted-imaging (b0-DWI: T2-weighted without diffusion gradients) when T2-weighted-spin-echo (T2-SE) was unavailable. We aimed to evaluate the additional value of b0-DWI in detecting cavitating lacunes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!