Gold nanoparticles (AuNPs) can be used to improve the performance of propagating surface plasmon resonance (PSPR) refractive index sensors. The resonant coupling effect between PSPR and localized surface plasmon resonance (LSPR) supported by AuNPs on sensitivity remains to be elucidated in terms of evanescent field intensity and distribution. In this study, we directly compare the sensitivity of the PSPR sensor and the resonant coupling mode between the PSPR and LSPR sensors in the wavelength scanning mode. The sensitivity of PSPR can be significantly improved in the near-infrared region excitation wavelength. 1,6-Hexanedithiol was used to achieve a AuNP modified gold film (GF-AuNP). The PSPR excited by the prism coupling mechanism can effectively stimulate LSPR supported by AuNPs in the GF-AuNP, and then resonant coupling is generated. Compared with PSPR, the resonant coupling mode shows a decrease in penetration depth by 28 times and an increase in the surface electric field intensity by 4.6 times in the numerical simulations. The decrease in the penetration depth in the GF-AuNP is made at the expense of bulk sensitivity. The biosensing sensitivity of the GF-AuNP shows up to 7-fold improvement in the carcinoembryonic antigen immunoassay and the GF-AuNP is proven to be a better biosensor. The experimental measurements are in excellent agreement with the theoretical model. This study can be also considered as a guide for the design of plasmonic sensors for detecting multiple substances at different scales, such as cells and proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr01076g | DOI Listing |
Sci Rep
December 2024
Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
Chronic ischemia in moyamoya disease (MMD) impaired white matter microstructure and neural functional network. However, the coupling between cerebral blood flow (CBF) and functional connectivity and the association between structural and functional network are largely unknown. 38 MMD patients and 20 sex/age-matched healthy controls (HC) were included for T1-weighted imaging, arterial spin labeling imaging, resting-state functional MRI and diffusion tensor imaging.
View Article and Find Full Text PDFNeurosci Biobehav Rev
December 2024
Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas; Department of Psychology, University of Nevada, Las Vegas.
This review highlights the crucial role of neuroelectrophysiology in illuminating the mechanisms underlying Alzheimer's disease (AD) pathogenesis and progression, emphasizing its potential to inform the development of effective treatments. Electrophysiological techniques provide unparalleled precision in exploring the intricate networks affected by AD, offering insights into the synaptic dysfunction, network alterations, and oscillatory abnormalities that characterize the disease. We discuss a range of electrophysiological methods, from non-invasive clinical techniques like electroencephalography and magnetoencephalography to invasive recordings in animal models.
View Article and Find Full Text PDFTo realize the aim of easy and accurate detection of ammonia and picric acid (PA) in both aqueous and vapor phases based on function-oriented investigation principles, in the present study, we include a luminescent performance with recognition performance, taking into account the application conditions. Zn(II) ions with luminescence qualities and an amine-substituted imidazole moiety with selective recognition properties towards picric acid and ammonia are coupled to generate a novel 1D luminous Zn(II) coordination polymer, Zn-CP [{Zn(II)( 2-ABZ)2(2-BDC)}].MeOH]∞, where 2-ABZ and 2-BDC stand for terephthalic acid and protonated 2 aminobenzimidazole, respectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Center for Optics Research and Engineering, State Key Laboratory of Crystal Materials, Shandong University, Qingdao 266237, China.
Shear mode ultrasonic waves are in high demand for structural health monitoring (SHM) applications owing to their nondispersive characteristics, singular mode, and minimal energy loss, especially in harsh environments. However, the generation and detection of a pure shear wave using conventional piezoelectric materials present substantial challenges because of their complex piezoelectric response, involving multiple modes. Herein, we introduce a high-quality piezoelectric crystal BiSiO (BSO), exhibiting a robust piezoelectric response ( = 45.
View Article and Find Full Text PDFMicrosyst Nanoeng
December 2024
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA.
Nanoelectromechanical systems (NEMS) incorporating atomic or molecular layer van der Waals materials can support multimode resonances and exotic nonlinear dynamics. Here we investigate nonlinear coupling of closely spaced modes in a bilayer (2L) molybdenum disulfide (MoS) nanoelectromechanical resonator. We model the response from a drumhead resonator using equations of two resonant modes with a dispersive coupling term to describe the vibration induced frequency shifts that result from the induced change in tension.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!