The intensification of industrial biopharmaceutical production and the integration of process steps pave the way for patients to access affordable treatments. The predominantly batchwise biomanufacturing of established cell clarification technologies, stainless steel disc stack centrifugation (DSC) and single-use (SU) depth filtration (DF), pose technological and economical bottlenecks, that include low biomass loading capacities and low product recoveries. Therefore, a novel SU-based clarification platform was developed combining fluidized bed centrifugation (FBC) with integrated filtration. The feasibility of this approach was investigated for high cell concentration with more than 100E6 cells/mL. Furthermore, scalability to 200 L bioreactor scale was tested for moderate cell concentrations. In both trials, low harvest turbidities (4 NTU) and superior antibody recoveries (95%) were achieved. The impact on the overall economics of industrial SU biomanufacturing using an up-scaled FBC approach was compared with DSC and DF technologies for different process parameters. As a result, the FBC showed to be the most cost-effective alternative for annual mAb production below 500 kg. In addition, the FBC clarification of increasing cell concentrations was found to have minimal impact on overall process costs, in contrast to established technologies, demonstrating that the FBC approach is particularly suitable for intensified processes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.28475DOI Listing

Publication Analysis

Top Keywords

cell clarification
8
fluidized bed
8
bed centrifugation
8
cell concentrations
8
fbc approach
8
fbc
5
cost-efficient cell
4
clarification
4
clarification intensified
4
intensified fluidized
4

Similar Publications

Perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA) are widely used substitutes to perfluorooctanoic acid (PFOA). Whether these substitutes are less toxic than PFOA remains unclear owing to differences in the experimental methods, test organisms, and other experimental conditions in previous studies. The present study selected 0.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is a critical stage in the metastasis of gastric cancer (GC). Further clarification of the EMT process in GC is still needed. This study examined the effects of the NEDD4L/BICC1 axis on GC proliferation and the EMT process.

View Article and Find Full Text PDF

For the clarification of dynamics of photogenerated carriers in practical organic solar cell devices, we have developed a methodology to simultaneously acquire reflection-mode transient optical absorption (ΔA) and transient electric current (Δi) signals. For a typical polythiophene:fullerene bulk heterojunction solar cell device, both the ΔA and Δi signals due to the photogenerated carriers are characterized by the power-law decays of ∝t-α, which are interpreted by detrapping-limited recombination at earlier times than ∼1 μs and trap-free diffusion/drift at later times. Furthermore, we have succeeded in observing switching of the power index α for ΔA signals as well as for Δi signals; the time at which switching occurs indicates the extraction of carriers by electrodes (transit times).

View Article and Find Full Text PDF

The effect of a citrus-derived flavonoid, hesperetin, on the automaticity and contraction of isolated guinea pig myocardium was examined. Hesperetin inhibited the rate of ectopic action potential firing of the pulmonary vein myocardium; the slope of the diastolic depolarization was decreased with minimum change in the action potential waveform. The effect was dependent on the concentration; the EC value for firing rate was 56.

View Article and Find Full Text PDF

The development of nasal inverted papilloma (NIP) is closely related to human papillomavirus (HPV) infection. Previous studies indicated that HPV11 shows the highest expression in NIP tissues. However, the mechanisms following its integration into host DNA require further clarification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!