A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recent advances and challenges in the use of CRISPR/Cas9 genome editing for understanding neuronal cell biology. | LitMetric

Recent advances and challenges in the use of CRISPR/Cas9 genome editing for understanding neuronal cell biology.

Neurophotonics

Utrecht University, Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, The Netherlands.

Published: October 2023

The ability to accurately map and manipulate the dynamic subcellular distribution of proteins is key for a mechanistic understanding of neuronal functioning. Current fluorescence microscopy techniques provide access to subcellular protein organization at increasing resolution but are often restricted by the availability of methods that reliably label endogenous proteins. Excitingly, recent development in CRISPR/Cas9 genome editing now allows researchers to specifically tag and visualize endogenous proteins, overcoming limitations associated with current labeling strategies. This article will discuss the progress that has been made in the last years that has led to the development of CRISPR/Cas9 genome editing tools for the reliable mapping of endogenous proteins in neurons. Furthermore, recently developed tools enable the duplex labeling of two proteins simultaneously and acute manipulation of protein distribution. Future implementations of this generation of genome editing technologies will undoubtedly drive progress in molecular and cellular neurobiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275379PMC
http://dx.doi.org/10.1117/1.NPh.10.4.044403DOI Listing

Publication Analysis

Top Keywords

genome editing
16
crispr/cas9 genome
12
endogenous proteins
12
understanding neuronal
8
development crispr/cas9
8
proteins
5
advances challenges
4
challenges crispr/cas9
4
genome
4
editing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!