Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ability to accurately map and manipulate the dynamic subcellular distribution of proteins is key for a mechanistic understanding of neuronal functioning. Current fluorescence microscopy techniques provide access to subcellular protein organization at increasing resolution but are often restricted by the availability of methods that reliably label endogenous proteins. Excitingly, recent development in CRISPR/Cas9 genome editing now allows researchers to specifically tag and visualize endogenous proteins, overcoming limitations associated with current labeling strategies. This article will discuss the progress that has been made in the last years that has led to the development of CRISPR/Cas9 genome editing tools for the reliable mapping of endogenous proteins in neurons. Furthermore, recently developed tools enable the duplex labeling of two proteins simultaneously and acute manipulation of protein distribution. Future implementations of this generation of genome editing technologies will undoubtedly drive progress in molecular and cellular neurobiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275379 | PMC |
http://dx.doi.org/10.1117/1.NPh.10.4.044403 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!